Getting Started with Gambas Version 2: A Tutorial Page 1 of 110

timothy.marshal-nichols @ntlworld.com

Getting Started with Gambas
Version 2: A Tutorial

Subject: Learning Visual Basic with Linux and Gambas

Author: Timothy Marshal-Nichols

File Name: Getting-Started-with-Gambas-Tutorial.odt

Version: 1.0 (Revision: 193) Sunday 28 May 2006

Contents

12 IEFOAUCTION. ...ttt ettt ettt ettt et s e et e st e et eebaeeabeeenee s 2
1.1: GAMBas AImost Means BaSiC........cccueiriiiiiiiniiiniiiiee et 2
| o (0] [T £ OO OO SRRSO U PO PRUPSUP 4
1.3: GAMDAS RESOUICES.......eeiiiiiiiiiieiiitee ettt et sttt e st e e eaaeee s 5
Lo LLICEIISE. .ttt ettt et ettt ettt eab et b e e b et bt et e naeeenee s 6
1.5: ACKNOWIEAZIMENLS.coiiuiiiiiiiieiiiie ettt e ettt e et e e st e s ba e e s ibeeesanaee s 6

2: Your First Gambas Project: SIMPIEEdit............coooiiiiiiiiiiieeee e 7
2.1: Creating the PIOJECL......ccciuieieetieeiieeeeite ettt e et e e ite e e eteeesbeeeetteesaseeeesseessaeeennseeensseaesssneensseeens 7
2.2: Creating the USET INTEITACE.coiiiiiiiiiieeieeieceteeee ettt 13
2.3: AddINg the COAE....c..oiiiiiiiiiiie ettt st 18
2.4: RUNNING the PIOJECT...ceeuiiiiiiiieiiieeiieeeitee ettt e ettt e et te e st ee et eesabeesabeessteesssaeensbeesnnsaeensseeennnees 23

3: Drawing Project: IMageShOW.........cooiiiiiiiiiiiiiie ettt ee e e eeeabae e 28
3.1: Creating the PIOJECT....cc.uiitieiiieiie ettt ettt et et e et e et e bt e e bt e s ate et e eabeesaeeeeaeeenbeenaeean 28
3.2: Creating the USer INTETTACE.ccuieiiiiiiiiiiieiiee et e 29
3.3: AdAING the COdE.....coouiiiiiiieeiiiie ettt e st e et ee e s aaeeesabaeesnaees 37
3.4: RUNNING the PIOJECT..ccueiiiiiiieiiie ettt ettt e et e st e st e e e sabeeesabeeesnbeeesabeeens 52

4: Database Project: INOTAIONS.ccuueeeriiieeiiiteeiieeeeitteeeetteeessiaeeesareessssaeeesnseeesnsseeesnsseeessssseesssseeens 56
4.1: Creating the PrOJECT......couiiiiiiiieiie ettt ettt ettt et e bt e st e st e st e esbeesareeeas 59
4.2: Creating the USer INEITACE.cc.eiviiiiiiiiieiie ettt et 64
4.3: Checking our user interface for CRUD..............cocciiiiiiiiiiiiii e 75
4.4: AAAING the COUE....ceiiuiiiiiiiiiiiie ettt ettt et e ettt e e st e e e bee e bteessbeesensaeeesseesnnseeennns 77
4.5: RUNNING the PIOJECT.....eiiiiiiiiiieeiieeiiteeeiteeeite et te et ee et ee st e e et e e sateesssaeesssbaeensseeesssneessseeeanns 99
4.6: Switching to a MySQL or PostgreSQL Database..........ccoooveeeriieiniiiiiniieinieceeiieeeeeeeee 102

5: Appendix 1: Database Commands with Exec and SQL..........c.cccoooiiiiiiniiiiiiiiieee 104

Getting Started with Gambas Version 2: A Tutorial Page 2 of 110
timothy.marshal-nichols @ntlworld.com

1: 'S Introduction

This is a simple Getting Started with Gambas Tutorial. It is intended for first time programmers who
want to gain some idea of the capabilities of Gambas. You can then see if this is the development
environment that they would like to learn more fully. It will also be useful for Visual Basic
programmers who are moving from Windows to Linux.

Traditionally on Unix based systems like Linux you used a number of tools to develop an
application. So you used a code editor, possibly a user interface designer, a compiler and other tools.
You preformed each stage of the development process with the relevant tool. This process can work,
after all much of Linux was built this way. It does have the advantage that if you do not like one tool
then you can replace just that tool with something you do like. But it can also have the disadvantage
of compatibility issues when the output of one tool does not fit the required input for another tool. It
also makes it difficult for new developers to learn the required steps to produce professional looking
application. To overcome these problems there are now a number of Integrated Development
Environment (IDE) for Linux. IDE's include all the tools you need to develop applications within
one framework. They have been very popular on other operating systems and developers moving to
Linux expect to find similar IDE's. Two of the most used IDE's on Linux are KDevelop and
MonoDevelop. KDevelop is an IDE for creating C and C++ applications and for using scripting
languages. MonoDevelop is an IDE for developing .NET application using languages like C# and
VisualBasic.NET and others.

Gambas is a IDE for Visual Basic on Linux. You can build most kinds of Linux application with
Gambas. However Gambas is especially strong at providing Graphical User Interfaces (GUI) types
of applications. They can be stand alone applications or front ends to a server or database. Gambas
provides all the tools you would normally expect in a IDE. It has a form designer where you can
drag controls and components onto your forms to develop your user interface. It also has a project
manager, a code editor, a code explorer and an integrated help system. You can also compile, run
and debug your applications from within Gambas. It is open source and so fits in with the Linux
philosophy.

Gambas also has a strong user community. There are a number of useful forums where new users
can get help. There is an active Gambas mailing list. If there are bugs with Gambas then, in my
experience, they are rapidly corrected. See the Gambas Resources section below.

Gambas is definitely a Visual Basic for Linux. It is not simply a port of Microsoft Visual Basic to
Linux. However Windows users of Visual Basic (at least up to version 6) will find much in this
environment that is familiar.

1.1: GAMBas Almost Means Basic

BASIC stands for Beginner's All Purpose Symbolic Instruction Code. This language was developed
by J. Kemeny and T. Kurtz at Dartmouth College to teach beginner programmers. Ever since it has

Getting Started with Gambas Version 2: A Tutorial Page 3 of 110
timothy.marshal-nichols @ntlworld.com

proved to a useful first language for beginners to learn. BASIC became very popular when personal
computers (PC's) first appeared in the 1970's. The small overheads of the language and the ease of
learning made it the language of choice for new programmers with their first PC. Microsoft
understood this and shipped QuickBASIC for MS-DOS.

Alan Cooper is credited as the 'father' of Visual Basic and sold the idea to Microsoft. Microsoft also
learned from HyperCard on the Mac and in 1991 launched Visual Basic 1.0. But it was not until
Windows 3.0 and Visual Basic 3.0 that this really became popular. Since then it has became one of
the most dominant development environment, both in the home and in industry.

There have been versions of the BASIC language for almost all operating systems and Linux is no
exception. There have been QuickBASIC like Unix/Linux versions. There are also versions of
Visual Basic for Linux like HBasic and KBasic. For more information and examples see
http://www.thefreecountry.com/compilers/basic.shtml. Arguably the most developed and usable of
the Visual Basics for Linux is Gambas.

Gamba is the Spanish for “prawn”. Gambas is also an Visual Basic IDE designed by Benoit
Minisini. The first public release of Gambas was Version 0.20 in February 2002. There then
followed a great deal of development work and releases. The first stable release of Gambas was
Version 1.0 in January 2005. Since then there have been a number of bug fixes to the stable version.
Also in January 2005 came the release of the new development version of Gambas (verion 1.9.1).
This version will eventually become the stable version 2.0.

All version of Gambas are issued under the GNU General Public License and are free to use. It also
means the Gambas runtime is free to use if you need to install it on a customers workstation. As
Gambas is open source you can obtain, look at and, if you need to, modify the source code. Also the
Gambas IDE is written in Gambas.

Q’ In this tutorial we are using the latest development version of Gambas. At the time of
writing the latest stable version is 1.0.16 (2 May 2006) and the latest development
Gambas yersion is 1.9.28 (29 April 2006).
Most of what is written here should work on the stable version of Gambas. Where
changes are needed you shall see a note like this. Look for the symbol on the left.
Also in the example projects that are part of this tutorial there are versions for Gambas 1
and 2.
All of the screen shots in this tutorial are from Gambas version 2. Some of the screens
may look slightly different in Gambas versionl or newer installs of version 2.

I have been using the development version of Gambas for about six months at the time of writing
this tutorial. I would say that Gambas is more stable than Microsoft Visual Basic 6. I have had fewer
crashes with the development version of Gambas than with production release of VB6. It is properly
just as stable as Microsoft Visual Basic .NET (both the .NET runtimes 1.0 and 1.1) which I have
also used quite extensively.

http://www.thefreecountry.com/compilers/basic.shtml

Getting Started with Gambas Version 2: A Tutorial Page 4 of 110
timothy.marshal-nichols @ntlworld.com

1.2: Projects

In this tutorial we shall develop three projects that demonstrate some of the types of applications
that can be built with Gambas.

- SimpleEdit. A simple text editor. This is a simple first application to demonstrate using the
development environment. It will show how by using some of the components from the tool
box and with a little coding you can build a usable application.

« ImageShow. A image display program for playing a slide show of images from a selected
directory. This application demonstrats some of the drawing functions in Gambas.

« Notations. A project for editing and storing user notes. This project demonstrates how to
create a user interface to a database. The application will also create the database if it does
not exist. You can then create, read, update and delete records in the database.

The following screen shot shows all three applications in action.

SimpleEdit

' Open a textfile
PUBLIC SUE ButtonOpen_Click()
' Showthe openfile dialog. If the user does
'not click the OK button then exit the procedure
IF Dialog.OpenFile() THEN RETURN
' Load the file into the TextArea
TextAreaEdit. Text = File.Load(Dialog.Path)
)| CATCH
'Ifthere is an error loading the file then
' display an error message
Message.Error{Error. Text)

Title:

Welcome [Welcome
Priority: () High () Medium (@ Low
MNote:

Welcome to Notations. A simple note taking application
*| The following buttons are in the tool bar:

.| The New button will create a new note

The Delete button will delete the currently selected note

The Refresh button will show all available note in the notes list

“| The Search button will find all notes with the search text in a note or note title
The Update button will save the current note

The Help button will show help

tions v.0.0.1 was d loped by Timothy Marshal-Nichols in April 2006
Itis issued underthe The GNU General Public License 2. @

\ "7 Notations - Version: 0.0.1

I leageshow

One issue I am not going to deal with in this tutorial is installing Gambas itself. Installing
applications on Linux can become hefty chapter in itself. Look at the Resources section of this
introduction for links were you can find more help and information.

Getting Started with Gambas Version 2: A Tutorial

Page 5 of 110

timothy.marshal-nichols @ntlworld.com

1.3: Gambas Resources

These are some of the web sites where you can find more information about Gambas. You may need
some of these links to complete this tutorial if your Linux distribution has not included all the
required resources. New sources of information about Gambas are coming on-line all the time.
Indeed I have had to add items to this list a number of times while writing this tutorial. I just keep
discovered more information about Gambas on the web. As always with web links they can become
out of date fast — these were valid in May 2006.

w Gambas:

The Gambas shrine

Sourceforge page for Gambas download
The Gambas help Wiki

Gambas Wiki Book textbook

German Gambas Wiki Book

You can subscribe to the Gambas mailing

list here:

Italian Gambas site

ﬂ Gambas Forums:
Linux Basic

My Gambas Community
German Gambas Club

Sitio web de Gambas (In Spanish)

il More Links:

SQLite

MySQL

PostgreSQL

Tango Desktop Project

GNU Licenses

Mono Visual Basic.NET

Free BASIC Compilers and Interpreters

http://gambas.sourceforge.net/

http://gambas.sourceforge.net/download.html

http://www.gambasdoc.org/

http://en.wikibooks.org/wiki/Gambas

http://de.wikibooks.org/wiki/Gambas

https://lists.sourceforge.net/lists/listinfo/gambas-user

http://www.gambas.it/

http://www.linuxbasic.net/

http://forum.stormweb.no/

http://gambas-club.de/

http://gambas.gnulinex.org/

http://www.sqlite.org/

http://www.mysqgl.org/

http://www.postgresgl.org/

http://tango-project.org/

http://www.gnu.org/licenses/

http://www.mono-project.com/Language BASIC

http://www.thefreecountry.com/compilers/basic.shtml

http://www.thefreecountry.com/compilers/basic.shtml
http://www.mono-project.com/Language_BASIC
http://www.gnu.org/licenses/
http://tango-project.org/
http://www.postgresql.org/
http://www.mysql.org/
http://www.sqlite.org/
http://gambas.gnulinex.org/
http://gambas-club.de/
http://forum.stormweb.no/
http://www.linuxbasic.net/
http://www.gambas.it/
https://lists.sourceforge.net/lists/listinfo/gambas-user
http://de.wikibooks.org/wiki/Gambas
http://en.wikibooks.org/wiki/Gambas
http://www.gambasdoc.org/
http://gambas.sourceforge.net/download.html
http://gambas.sourceforge.net/

Getting Started with Gambas Version 2: A Tutorial Page 6 of 110
timothy.marshal-nichols @ntlworld.com

1.4: License

You are free to use the content of this tutorial and example source code as you wish. Also you can
distribute this tutorial to whoever you wish. I would request that you acknowledge the author and
also make sure the source code for example applications is freely available (both for Versions 1 and
2 of Gambas). But you are not forced to this. The text of this tutorial is issued under the The GNU
Free Document License. All of the applications and code examples from this tutorial are issued
under the The GNU General Public License 2. For details see http://www.gnu.org/licenses/.

1.5: Acknowledgments

Many thanks to Rohnny Stormo at My Gambas Community for checking over this tutorial.

http://forum.stormweb.no/
http://www.gnu.org/licenses/

Getting Started with Gambas Version 2: A Tutorial Page 7 of 110
timothy.marshal-nichols @ntlworld.com

2: % Your First Gambas Project: SimpleEdit

Out first project is going to be a simple text editor. As a starting point this may seem a little
ambitious for someone who has never programmed in Gambas before. Admittedly our text editor is
not going to be as full featured as some editors you may have used. But still it will be a usable text
editor. This project shows the power of a modern development environment. By using the
functionality of pre built components it is easy to build some usable applications quickly.

With SimpleEdit you can do many of the things you can do with any other text editor. You can open
and save text documents. You will have to write a bit of code to achieve this. But the TextArea
component we are going to use also gives us a lot of functionality. This includes being able to cut,
copy and paste from the clipboard. It also gives us an undo facility. And we do not have to write any
code to include this functionality in our application.

In this first project for Gambas we are going to provide detailed screen shots for most of the steps.
In the later example projects we shall assume you do not need so many screen shots. You can always
refer back to this project.

2.1: Creating the project

The first step is to create a new Gambas project. So open Gambas and and select New project....
This will start the new project wizard. The first page of the wizard simply shows a welcome screen
with details of how to use the new project wizard.

Getting Started with Gambas Version 2: A Tutorial Page 8 of 110
timothy.marshal-nichols @ntlworld.com

' Create a new project -2

Welcome to the Gambas project creation
wizard!

This wizard allows yvou to create a new Gambas project. This project will be created
from scratch or from an already existing project.

Press the Next button to start creating the project.

Press the Caneel button to cancel the wizard.

MNest ==

Click the Next >> button for the next page of the wizard. This shows a page were you can select the
type of Gambas project you want to build. The types of projects include:

- A graphical project. As this is the most often used option and it is the default option. This
type of application would have windows with which the user interacts. It would be
controlled by the mouse and/or the keyboard.

+ A terminal project. You would run this type of project from a terminal window. You can
read and write data to standard input, error and output. It will accept parameters from the
terminal and all the other thing you would expect from a command line application.

- Copy an existing project. You used this option if you want to clone an existing project to
use as the starting point for a new Gambas project.

- Import a VB project. Here you can import a project created with Microsoft Visual Basic.

Getting Started with Gambas Version 2: A Tutorial Page 9 of 110
timothy.marshal-nichols @ntlworld.com

" Createa new project -2

Select the type of the project

Create a

':::' Copy an
graphical projec

existing project

Create a
terminal project

Import a
VE project

O

[=< Previous][MNest ==

We are going to use the default option of a graphical project. So click the Next >> button. This
shows a page when you enter the name and title for your project we are going to create.

Getting Started with Gambas Version 2: A Tutorial Page 10 of 110
timothy.marshal-nichols @ntlworld.com

¢ Create a new project =

Select the name of the project

[SimpIeEdit]

Select the title of the project

IAsimpIe text editor |

Options
[| Projectis translatable

|:| Form controls are public

[<< Previous][MNest ==

Enter the name of SimpleEdit and thetitleof A simple text editor. Leave the other
options unchecked. Click on the Next >> button. This shows a page where you select the directory
where you want to save the project files.

-@- The following screen shot shows saving your project to the documents directory. This is
L) simply to illustrate the dialogue. However it might be easier to set up a directory where
you save all your Gambas projects. You could then store all your project in one location.
This would then make managing your projects easier.

Getting Started with Gambas Version 2: A Tutorial Page 11 of 110
timothy.marshal-nichols @ntlworld.com

5

‘& Create a new project -2

Select the directory of the project

Look in [IhumeﬂimutthucumenE vl EE e
|@ ﬁtlmﬂthf B Mame |5Ia=
[Ckin

[CJDesktop
[JGambasBook
[C]GNUstep
[[JHEasic
[Jlcons
[[Jkbasic L9
[(JManPages
CIMySal

[CJPictures
[[JProjectsGambas @

¥ P— | G ()

Directory [Ducumems]

[<< Previous][MNest ==

Select the location where you want to save the project. Then click the Next >> button. This final
page of the wizard lists the options you have selected for the project.

Getting Started with Gambas Version 2: A Tutorial Page 12 of 110
timothy.marshal-nichols @ntlworld.com

¢ Create a new project =

Create a new project

All needed information have been collected. Here is a summary of
what will happen.

Click on the OK bufton to create the project.
Click on the Previous button if you had made a mistake.

Click on the Cancel button to cancel the operation.

Create a graphical project B
Project name
SimpleEdit
Project directory

fhameftimothy/Docurnents

Options Ll

More. @

=< Previous [oK] [Cancel]

*) Project - SimpleEdit -©) Check through the options and then click the
OK button. We have created a new Visual Basic
project and Gambas will open showing the

File Project WView Tools 2

DEEEd&EAHD Gambas project manager.

L R RS-

© G SimpieEdit
[(Clases Gambas will also open two other windows. One
(JForms is a Toolbox. This shows some of the controls
[(AModules we can use in our projects. The other is the
(B Data Properties window. This is where the properties

of controls in your project can be edited. As we
have not created any controls yet it will be
blank.

—@— If the is the first time you have run Gambas you may see two other items. The first is a
=) Tip of the day window and the other is the Gambas mascot.
On the Tip of the day window there is a Close button to hide this window. Also if you
do not want to see this window each time you start Gambas then there is a check box
labelled Show tips on startup — make sure it is unchecked. If you want to see the Tip of

Getting Started with Gambas Version 2: A Tutorial Page 13 of 110
timothy.marshal-nichols @ntlworld.com

the day window again the select the ? (help) menu in the Gambas project manager and
then the Tip of the day option.

The other item you might see is the Gambas mascot. Some people like this and others
do not. You can select whether this is shown or not. In the Gambas project manager
select the Tools menu and then the Preferences... option. This will show a dialogue
where many of the settings for the Gambas user interface can be changed. Select the
Others tab. In the Miscellaneous section there is a check box where you can select if
the Mascot is shown or not. If you select not to show the Mascot it will look sad.

2.2: Creating the user interface

Now we have a Gambas project. The next step is to add some elements to the project to give us a
user interface. This project will have one window. Most of this window will be taken up with a
TextArea control. By using this control we get most of the functions for our text editor. The window
will also have two button at the top of it. With these buttons you will be able to open and save
documents from the TextArea.

“} Project - BImpleEdit_:.E_:'..; Right click in the Gambas project
manager. This brings up a pop up
menu. From the list select New. This

_—

File Project W¥iew Tools 2

Ry & @? & 20 & shows a sub menu with the items we
PUERHOE can add to our project. We need to add
= @ simpleEdit a Form to act as the main window to
(] Classes our application. So select Form... from
Module... this menu.
CDat [Form...
@ Class...
Image...
Textfile...
(] Directory...
oK

This menu option shows a dialogue where we can define some of the properties of the form we are
going to create.

Getting Started with Gambas Version 2: A Tutorial

Page 14 of 110

timothy.marshal-nichols @ntlworld.com

New form -2}

New Existing

|Fnrm|‘~"|ain

Options

IE| Startup class

|:| Default dialog management
[] Constructar

|:| Destructar

[] static constructor

|:| Static destructor

QoK] [Cancel

<) Project - 5impleEdit ==

File

Project View Tools 7

D EEd a0 HO
LN RN EUY- |

(=) GSimpleEdit

[Classes
== Forms

= FormMain

[CJMadules
[Data

Give the form the name of FormMain
and accept the other default options.
The startup class is the class the
Gambas runtime will first load when
the application is started. There can
only be one startup class in your
project. We want this form to be the
startup class so make sure this option is
checked. Leave all the other options
unchecked. Now click the OK button
to create the form. The Gambas project
manager should now look like the
screen shot on the left.

Getting Started with Gambas Version 2: A Tutorial Page 15 of 110
timothy.marshal-nichols @ntlworld.com

We now need to add some controls on to the form we have just
created. First we shall add two buttons. Make sure the form we
have just created is visible. If it is not then double click on the form
in the project manager. Also make sure the Toolbox is visible. If it
is not then select the project manager View men then Toolbox sub
menu or press the F6 key.

The tool box has several tabs that group the kinds of controls we
abc can use. Make sure the Form tab is selected. When you move the

® O

: ’E_E]

Gamtf ‘ ‘ ‘

mouse over items in the toolbox the tool tip changes to show the
‘ type of object. Select the Button control in the tool box.

D = :.:n. ‘

‘ ‘ ‘ ‘":33 B Place two Buttons at the top of the form window. You can drag
and drop items from the tool box onto a form designer window. It
is much easier to do than it is to describe how to do it!

Conbsiner
Special

Now do the same thing with a TextArea. Place the TextArea
under the Buttons.

Make sure the TextArea is pused up under the two Buttons and on
the far left of the form,

‘ 1 In Gambas version 1 you will see only one tab for all
the controls.

Sambas

= || camt
o Almice
— Mean =

Conbslner

Special

Getting Started with Gambas Version 2: A Tutorial Page 16 of 110
timothy.marshal-nichols @ntlworld.com

FormMain.form [modified] -2 Your FormMain should now
— look something like the screen
Butond | Buin2 {11 shot of the lefit The exact size
TextAreal S of the TextArea does not matter

so long as the top, left position
is correct. This is because we
are going to resize this
TextArea at runtime.

The controls will have their
default name. However these
default names do not give and
information about how we
intend to use them. It is good
programming practice to
change their names to
something meaningful for our
__ application. This way we will
ool write self-documenting code.

Getting Started with Gambas Version 2: A Tutorial Page 17 of 110
timothy.marshal-nichols @ntlworld.com

We are now going to change some of the properties
of these controls. If the properties window is not
visible then select the project manage View menu
then the Properties sub menu or press the F4 key.
Now click on Button]1 in the form designer. This will
show the properties for this button. We are going to
Width change the Name property to But tonOpen and the

Height Text property to Open. . .
Wisible

Enabled
Font
Background

8= Properties - =

Button

ButtonOpen

Now we shall change the some properties for the
other controls on the form. Click on Button2 in the
form designer. This will show the properties for
Button2. We are going to change the Name property
to ButtonSave and the Text property to Save. . .
Finally click on TextAreal in the form designer. We
Expand Falke are going to change the Name property to

Text Open.. I TextAreaEdit and then delete the text in the Text
Picture property. In other words make the Text property
Border True empty.

Default False

Foreground

Tag

Mouse Default
ToolTip

Drop False

Cancel False

Finally we shall change one property on the Form. Click on the form then change the Border
property to Resizeable. The following table list the properties we have changed.

Default Name Property New Value
FormMain Border Resizeable
Button1 Name ButtonOpen
Text Open...
Button2 Name ButtonSave
Text Save...
TextAreal Name TextAreaEdit
Text <none>

Our form should now look like the following screen shot when viewed in the form designer.

Getting Started with Gambas Version 2: A Tutorial Page 18 of 110
timothy.marshal-nichols @ntlworld.com

FormMain.form [modified] <22

=l A
e,

Open... Save..

That all we need to do with the form designer. In many ways it is harder to describe what to do than
do it. We can see how easy it is to build a user interface in Gambas.

2.3: Adding the code

It is now time to add some code. In fact we we do not need to add very much code. All we need to
handle are resizing the TextArea when the form is resized. We also need to handle opening and
saving a text file when the user clicks on one of the buttons.

In Visual Basic you write code to handle events. Events occur when something happens to a control
or object. The control or object fires the event to allow other controls or objects to respond and do
something when the event happens. For a form object possible events include:

When the form is opened

When a key is pressed

When the form get clicked by the user
When the form is closed

Along with many other events. For a button possible events include when it is clicked by the user

Getting Started with Gambas Version 2: A Tutorial
timothy.marshal-nichols @ntlworld.com

Page 19 of 110

and when it is double clicked. In Visual Basic you write code to hook up the events fired by controls
or objects to the actions you want your application to perform.

When you double click on a control or form in the Form designer it shows the default event handler
for that object in the code editor. If the code does not exist for the default event handler it is created
for you. For a form the default event is Form_Open. For this application we do not need to do
anything when this event is fired. However we do need to add an event handler for the

Form_Resize event.

FormMain.form [modified] =

Ctri+4

Arrangerment L4

Menu editar... Ctri4E
EH save Ctri+5
[5] Code Ctrl+W
Properties Fa

Activate
Close
DblClick
Deactivate
Crag
DragMove
Drop
Embed
Enter
GotFocus
Hide
KeyPress
KeyRelease
Leave
LostFocus
Menu
MouseDown
MouseMove
Mousellp
MouseWheel
Mowve

Open
Resize

To add the form resizing event
handler right click on the form.
(Make sure you right click on
the form, not on the TextArea
or one of the Buttons.) This
will show a pop up menu. From
this menu select Event. This
will show a sub menu of all the
events you could handle that
are generated by the form.
Select Resize from this sub
menu.

This will add a stub for the
Form_Resize event to the
code in the forms class. Now
we shall add the event handlers
for the button click events. As
the click event is the default
event for the button it is much
simpler to add. In the Gambas
form designer Double click on
the ButtonOpen button to add
the ButtonOpen_Click
event. Finally double click on
the ButtonSave button to add
the ButtonSave_Click
event.

These are all the events we want to handle in this application. At the end of creating the event
handles the Gambas code editor should look something like the following screen shot.

Getting Started with Gambas Version 2: A Tutorial Page 20 of 110
timothy.marshal-nichols @ntlworld.com

[FormMain.class 17:1 [modified] £ Now we shall add the code from

H < % R) Ccu o g 0 the following listing to these event

stubs. Note that “# icon in the
following listing means that this is
PUBLIC SUB Form Resize () a continuation of the previous line.
Hence for the Form_Resize
event need only add one line of
code. So enter the following code
END into the code editor.

Gambas clazs file

PIBLIC 3B Buttonfpen_Click()

END

PIBLIC SUB ButtonSave_Clicki)

FormMain.class

' Gambas class file

PUBLIC SUB Form_ Resize ()

TextAreakEdit.Resize (ME.ClientWidth, ME.ClientHeight -
'+ TextAreakEdit.Top)
END

PUBLIC SUB ButtonOpen_Click ()
IF Dialog.OpenFile () THEN RETURN
TextAreakdit.Text = File.Load(Dialog.Path)
CATCH
Message.Error (Error.Text)

END

PUBLIC SUB ButtonSave_Click ()
IF Dialog.SaveFile() THEN RETURN

Getting Started with Gambas Version 2: A Tutorial Page 21 of 110
timothy.marshal-nichols @ntlworld.com

File.Save (Dialog.Path, TextAreaEdit.Text)
CATCH
Message.Error (Error.Text)

END

You might be wondering what some of this code does. So lets look in detail at this code. In the first
procedure we resize the TextArea whenever the form is resized. This resize event also occurs when
the form is first created so we do not have to add extra code to handle this case.

The first line of code tells us we are going to handle the form resize event. The name for event
handlers have the following format:

- The name of the object that fires the event
« An underscore
« The name of the event

So here we are saying we are going to handle the Resize event on the Form object.
PUBLIC SUB Form_Resize()

We then call the Resize method on the TextArea. Here we tell the TextArea what size we want it to
be.

TextAreakdit.Resize (ME.ClientWidth, ME.ClientHeight -
'+ TextAreakEdit.Top)

The Resize method takes parameters that set the width and height of the TextArea. We calculate the
size based upon the size of the current form. ME stands for the current object, in this case the current
form. Note that we use ClientWidth and ClientHeight when we get the size of the current
form. The C1ient XXX properties always give the correct size. The form also has Width and
Height properties. But the value they return depends on whether the form is maximised. So they
might not return the value you expect. Also we want to leave space at the top of the form so that our
buttons are visible. So we have to deduct the value for the top of the TextArea from the height of the
form.

The final line for the procedure signals where the code for the event ends.

END

The next line tells us we are handling the click event for the open file button.
PUBLIC SUB ButtonOpen_Click ()

The first thing we need to do in this procedure is get the path of the file the user wants to open. The
Gambas Dialog object has a number of methods with which you can display a number of common
dialogs. Among these is a open file dialogue. Also if the user cancels the dialogue we should exit
our procedure and no nothing further. Giving the user the chance to cancel an action is good

Getting Started with Gambas Version 2: A Tutorial Page 22 of 110
timothy.marshal-nichols @ntlworld.com

programming practice. The OpenFile method returns FALSE when the user clicks on the OK
button and TRUE otherwise. By placing this statement inside an IF we can check the return value of
the OpenFile method. The RETURN statement causes the procedure to quit immediately. So if the
user does not click on the OK button after selecting a file name we then we exit from this
procedure. At first this line looks somewhat counter intuitive. But this way of calling the dialog does
works very well when you get used to it.

IF Dialog.OpenFile () THEN RETURN

When we reach the next line we know the user has clicked on the OK button and selected a file. The
Dialog object has a property called Path which we can use to get the full path to the selected file.

You use the File object when performing file input and output. The File object also has useful
methods for quickly reading a text file. Here we use the File.Load () method. It takes as
parameter the path to our file and then returns the content of the file as a text string. This function
handles all the opening, reading and closing of the file for us. It is easy to use this function when we
want the entire content of a plain text file. We pass the content of the text file TextArea's Text
property. This replaces the entire content of the TextArea with the content of the file we have
opened.

TextAreaFkEdit.Text = File.Load(Dialog.Path)

We also need to handle any possible errors in our application. This is especially true when you
communicate with anything outside your application. Here we have a dialogue where the user enters
input. We also have a file that could contain almost anything. Without the following error handler
our program would crash if the user selected an invalid file or a file where they did not have read
permission. If any error occurs then the Gambas runtime jumps to this CATCH statement. Here we
will just display a message to the user. By using the Error method on the Message object we
display a error icon in the message box. Here we have kept the message as simple as possible. We
simply show the text from the error that was created.

CATCH
Message.Error (Error.Text)

END

Code after a CATCH statement is not executed when no error occurs. So with valid files the user will
never see the message box.

The code for the save file button is very similar to that of the open file button. The first line tells us
we are handling the click event for the save button.

PUBLIC SUB ButtonSave_ Click ()

This time we call the save file dialog which is very similar to the open file dialog we used above.
But this dialog has functionality more appropriate to saving a file. Again this dialog returns FALSE
when the user clicks on the OK button and TRUE otherwise. So if the user does not click on the OK
button after selecting a file name we exit from the procedure.

IF Dialog.SaveFile () THEN RETURN

Getting Started with Gambas Version 2: A Tutorial Page 23 of 110
timothy.marshal-nichols @ntlworld.com

Again we use the File object for saving. This object also has a useful method for saving text files.
We simply need to tell it what path to use when saving the file and what string to save. Here, of
course, we are going to save the content of our TextArea.

File.Save (Dialog.Path, TextAreaEdit.Text)
Here again we have the same kind of error handler as for the open file button.
CATCH

Message.Error (Error.Text)

END

2.4: Running the project

*; Project - SimpleEdit -2 That's everything we need for this project. So
lets run it. You run the project by clicking on
the green Run button in the project manager

DF@EE s HD window or by pressing the F5 key.
AL KNS EUY |

q:”un impleEdit

[JClasses
=-E5Forms
lrFu:urmMain
[IModules

[]Data

ey

File Project WYiew Tools 2

—\(éj— If the project does not run the most likely cause is a misspelling in the code we entered.

L) Look as the line that Gambas highlights when finding an error and check the names
match the names of the controls on the form. Also check the syntax of the highlighted
line matches the code example.

Here is a screen shot of the final running application after we have opened the code file for this
project. As you can see the code is the same as above, but there are extra comments in this file.
These comments are in the examples that come with this tutorial. The screen shot also shows a pop
up menu with options for editing the text. This menu is part of the TextArea control. You get this
menu for free by using this control. Try right clicking on the TextArea in your application when it is
running.

Getting Started with Gambas Version 2: A Tutorial Page 24 of 110
timothy.marshal-nichols @ntlworld.com

SimpleEdit -2

" Form events

' Resize the TextArea when the form is resized
PUBLIC SUB Form_Resize()
' ME isthe current form. So ME.ClientWidth and ME.ClientHeight give
'size of the current form. We deduct TextAreaEdit. Top from the height
's0 we leave ﬁce forthe buttons.
TexthreaEdit. Resize(ME.ClientWidth, ME.ClientHeight - TextAreaEdit. Top)

Undo Cirl+Z

"' Buttons Cut Ctri+X

Copy Ctri+C

Past Ctrl+V
'Open atext file Lt '

PUBLIC SUB Butty -12ar
'Show the oper Select All
‘notclickthe O] gejectinput Method
IF Dialog. Openfrer o mo oy
'Load the file into the Textirea
TexthreaEdit. Text = File.Load(Dialog.Path)

When you develop any kind of application you need to test its functionality. Above all you should
not be able to crash the application. It should be able to handle any errors gracefully and give the
user a useful error message. Even for an application as small as this you should have a test plan.

But what should you test? These are the most likely problem areas with any application:

+ Your code. Your tests should cover every line of code in the application. This includes all
branches is a selection. Also every loop should be tested for zero, one and many iterations.

- Interaction between objects. It is often in the interaction between objects where errors
occur. There should be a test for every achievable interaction between objects (interaction
that are only theoretical need not be tested).

- Interfaces to the world outside you application. Any useful application has to
communicate with something outside of itself. Your application should not trust any data
from outside of itself until it has been validated inside the application. This includes user
input as well and communications to any devices. You also need to test for any mix of
otherwise valid inputs that together are invalid. Also any invalid data should be handled
appropriately.

Normally you would not test the following items (except when building a critical system — such as
application for use is a hospital):

« Operating system functions. These could be system calls or shell commands.

Getting Started with Gambas Version 2: A Tutorial Page 25 of 110
timothy.marshal-nichols @ntlworld.com

In-built controls for your programming environment.
Any third party components in your application.

These are items you have less control over. If there are faults with any of these items then you would
properly have to change your application to work around the fault.

A good way to to test you application is to produce a table of tests. Ideally you would produce this
table before you started coding the application. If new features are later added to the application
then add more tests to the table. In the table you would write down each of the test and the result
you expect for the test to pass. You need to state the expected result so there is no ambiguity if your
application does something different. The final column is for you to record the results of the testing
process. Our first set of tests deal with resizing the application window.

Form Resizing Tests

Test Expected Result Pass/Fail
Resize the window using right edge Window should be resize and the text area
resized to fit in the window.
Resize the window using bottom edge As above.
Resize the window using left edge As above.
Resize the window using top edge As above.

Resize the window using north/west corner As above.
Resize the window using south/west corner As above.
Resize the window using south/east corner As above.
Resize the window using south/east corner As above.

Minimize the window and restore it The window should be correctly resize
when restored.

Maximise the window and restore it Window should resize and the text area
resize to fit in the maximised window.
The window should be correctly resize
when restored.

Make the window height smaller then the You will not see the text area. No error
top row of buttons should result.

Make the window width smaller than the No error should result.
width of both buttons

The next set of tests are for the button which opens a text file.

Getting Started with Gambas Version 2: A Tutorial Page 26 of 110
timothy.marshal-nichols @ntlworld.com

Open File Tests

Test Expected Result Pass/Fail
Open text file File displayed in text area
Open an empty text file Text area empty
Open a very large text file File displayed in text area.
Open a binary file File displayed in text area. Content is

properly not very meaningful
Try to open a file that does not exist Error message

Try to open a file where you do not have Error message
read permission

The final set of tests are for the button which saves a text file. When preforming the save file tests
make sure you do not overwrite any files you need or any system files.

Save File Tests
Test Expected Result Pass/Fail

Enter some text in the text area and save a File saved
new text file to your Home directory

Enter some text in the text area and save to File saved
an existing file in you Home directory.

With no text in the text area save an empty File saved
file to your Home directory

Open an binary file and save this as anew File saved
file

Try to save the file to a directory where Error message
you do not have write permission

Try to save the file to a directory that does Error message
not exist

We have ended up with more tests than lines of code in our application. This may seem overkill for
your first project. But the more thorough you are at testing the more useful your applications will be
to other users. Getting used to a tough testing regime from the start will pay dividends in the long
run. The real problem is being as meticulous as you can in your tests. You need to cover any many
options as possible and make sure all code is covered. One hundred percent coverage is not possible,
but you should aim for this.

So work through the list of text and make sure you record if they pass or fail. If any test fails you
will need to debug the code to find the fault. Also are there any tests that should be added to the

Getting Started with Gambas Version 2: A Tutorial Page 27 of 110
timothy.marshal-nichols @ntlworld.com

list?

—\(g— One of the best pieces of advice I can give you is:
Use the applications you build yourself.

If you build a paint program then use it for all your drawing tasks. That way you find
what features you need to add. (And also what features seemed a good idea at
development time, but are little used.) Also after a few weeks make sure you think again
about how easy it is for a new user to learn your application.

That was not to hard. We have created a basic but perfectly functional text editor. We have achieved
this by using the power of existing components. The core functionality for our text editor was
already contained in the TextArea control.

You could go on adding features to this project and develop it as your own text editor. For example
you could add some buttons to cut, copy and paste text. Then hook these up to the methods on the
TextArea control to handle this functionality.

Getting Started with Gambas Version 2: A Tutorial Page 28 of 110
timothy.marshal-nichols @ntlworld.com

3: % Drawing Project: ImageShow

With this project we are going to create a simple slide show application. We want the project to have
the following functionality:

The application should display images from a selected directory.
The display should be full screen.
Images should be displayed full size and centred on the screen.

If an image is larger then the screen then it should be scaled to fit on the screen keeping the
aspect ratio of the image.

Once a directory is selected the application will scroll through the images displaying one
every 15 seconds.

Pressing the Escape key will quit the application.

Pressing F1 will display a brief help screen.

Pressing space bar or right arrow will scroll to the next image.

Pressing the backspace key or left arrow will display the previous image.
Pressing the 'D' key will allow the user to change the image directory.
Pressing the 'S' will start or pause the slide show

Pressing the 'T' key will display information about the image/show.

The mouse should be hidden when images are displayed.

This looks like a long list but as we shall see the final application is not that complex.

3.1: Creating the project

The first step is to create a new Gambas project. So open Gambas and and select New project....
This will start the new project wizard. The first page of the wizard simply shows a welcome screen
with details of how to use the new project wizard. Click the Next >> button to for the next page of
the wizard. This shows a page were we can select the type of Gambas project we want to build. We
are going to use the default option of a graphical project. So click the Next >> button. This shows a
page when you enter the name and title for your project we are going to create.

Getting Started with Gambas Version 2: A Tutorial Page 29 of 110
timothy.marshal-nichols @ntlworld.com

Select the name of the project

[ImagEShnw]

Select the title of the project

IAsimpIe image slide shnv.d |

Options
[| Projectis translatable

|:| Form controls are public

[<< Previous][Mext ==

Enter the name of ImageShow and the title of A simple image slide show. Leave the
other options unchecked. Click on the Next >> button. This shows a page where you select the
directory where you you want to save the project files.

Select the location where you want to save the project. Then click the Next >> button. This final
page lists the options you have selected for the project. Check through the options and then click the
OK button. We have created a new Visual Basic project and Gambas will open showing the Gambas
project manager.

3.2: Creating the user interface

Now we have a Gambas project. The next step is to add some elements to the project to give us a
user interface. This project will have one window that will be displayed full screen. All of this
window will be taken up with a DrawingArea control. We could draw the image directly on the form
but using a DrawingArea gives us some extra functionality. We will also put a timer on the form.
This is so we can fire events to change images as set intervals.

Getting Started with Gambas Version 2: A Tutorial Page 30 of 110
timothy.marshal-nichols @ntlworld.com

*) Project - ImageShow -2 Right click in the Gambas project manager.
" This brings up a pop up menu. From the list
select New. This shows a sub menu with the

7

File Project ¥iew Tools 2

LDEE e éﬁ% £ 20 H items we can add to our project. We need to
PUERHOHE add a Form to act as the main window to our
& @ImageShow application. So select Form... from this

[Classes Mmenu.

Module...

This menu option shows a dialogue where we
can define some of the properties of the form
we are going to create.

[(@) (o) e (1)
3

New form -2

et

MNew Existirg

Name B

P2k

—H=

|Form|mage5how | == [e=]
Options

[¥ startup clas

|:| Default dialog management
|:| Constructor

[] Destructor

|:| Static constructor

[] static destructor

[oK][Cancel]

Give the form the name of FormImageShow and accept the other default options. The startup
class is the class the Gambas runtime will first load when the application is started. There can only
be one startup class in your project. We want this form to be the startup class so make sure this
option is checked. Now click the OK button to create the form.

Getting Started with Gambas Version 2: A Tutorial Page 31 of 110

Bl Tool h-ux. =

e

Conbslner

Special

Farrm

Conbalner

Special

timothy.marshal-nichols @ntlworld.com

We now need to add some controls on to the form we have just
created. First we shall add a Timer. Make sure the form we have
just created is visible. If it is not then double click on the form in
the project manager. Also make sure the Toolbox is visible. If it is
not then select the project manager View menu then Toolbox sub
menu or press the F6 key.

The tool box has several tabs that group the kinds of controls we
can use. Make sure the Special tab is selected. When you move
the mouse over items in the toolbox the tool tip changes to show
the type of object. Select the Timer control the the tool box.

Place a Timer on the form window. You can drag and drop items
from the tool box onto a form designer window. It does not matter
where you put the timer as it will not be visible when the program
is run.

Now make sure the Container tab is selected. Select the
DrawingArea control in the tool box and place this on the form. It
does matter where you place the DrawingArea as it will be resized
at run time.

‘1 For Gambas version 1 these two controls are on the

Form tab.
Gambas

At this point our FormImageShow should look like the following
screen shot.

Getting Started with Gambas Version 2: A Tutorial Page 32 of 110
timothy.marshal-nichols @ntlworld.com

)

Formimageshow.Torm [moditied] ___-E,

The controls will have their default name. However these default names do not give any information
about how we intend to use them. It is good programming practice to change the names to
something meaningful for our application. This way we will write self-documenting code.

B Properties We are now going to change some of the properties of these
Tirner controls. If the properties window is not visible then select the
Tirmershow project manage View menu then Properties sub menu or press the
F4 key. Now click on Timerl1 in the form designer. This will show
14 the properties for this object. We are going to change the Name
14 property to Timer Show.

Enabled False
Delay 1000

Getting Started with Gambas Version 2: A Tutorial Page 33 of 110
timothy.marshal-nichols @ntlworld.com

£ Properties £

DrawingArea
Drawingirealmage

14

70
Width
Height 56
Wisible
Enabled
Font
Background
Foreground
Tag
Mouse Default
ToolTip
Drop False
Expand False
Cached False
Tracking False
Merge False
Border Mone

Click on the DrawingArea object and change the Name
property to DrawingArealImage.

That all of the properties we are going to change in the
Form designer. Some other properties of these objects will
be changed in the code.

We want to show some help informations to the user when
they press the F1 key. The method we are going to use is
suitable when the required amount of help is small and will
fit on one page. The Gambas Message box is quite a
flexible class and will take a HTML formatted message.

So with the single line of code:

Message.Info(File.Load("help.htm"))
we can display a HTML file.

“} Project - ImageShow -2

=7

File Project Wiew Tools 7

DEEE® &0 Ha
L R Y- |

So let create the HTML file in Gambas. Right
click in the Gambas project manager. This
brings up a pop up menu. From the list select
New. This shows a sub menu with the items
we can add to our project. We need to add a

(=) slmagEShuw
[]Classes

=-EqForms
b FarmlimageShow
[CIModules

Text file so select Text file... from this menu.

@ Module...
Faorm...

@ Class...
Image...
Textfile...

[Directory...

This shows a dialogue where we give the text file a name.

Getting Started with Gambas Version 2: A Tutorial Page 34 of 110
timothy.marshal-nichols @ntlworld.com

New text file -2

New Existing

Name T,

>,

[nelp.htm

Destination folder

Look in [Jrnjecﬁn'Chapter—ﬂl-SixPrnjecﬁ.ﬂlmageShuw v] E £

\83
" ImageShow @
Form lmageshow.class
SE=
==l

Form Imageshow. farm

Directory ImageShow]

oK][Cancel]

help.htm 1:7 -2 Give the file the name
<body> help.htm and press the

<h2>ImageShow Help</hi OK button to save it. This
<hr> will add the file to the
“<prImageihow presents a slide show of images Lrc data section ofyour
</p=
<p»The followlng keys can be used while viewing
</p>
<p=The Space bar</I

The Backspace</fonts>< window. The screen shot
<br»>The <b:D key 1 on the left shows the

The <b:I key 1 Gambas text editor

The <brS5 key f window after we have

The Fsc</font: key entered some HTML into

The Fl key .
</p>
<hr>
<prImageShow v.0.0.1 was developed by Timothy Mz
</px

<hrz
</ body>

7 (]

project and will open the
new text file in the
Gambas text editor

1t.

Getting Started with Gambas Version 2: A Tutorial Page 35 of 110
timothy.marshal-nichols @ntlworld.com

This is not a tutorial about HTML — there are plenty of those on the internet. So we are not going to
say much about this file. Just enter the following HTML into the text editor. Note that, as before, the
“# icon in the following listing means this line is a continuation of the previous line.

help.htm

<html>
<head>
<title>ImageShow Help</title>
</head>
<body>
<h2>ImageShow Help</h2>
<hr>
<p>ImageShow presents a slide show of images from a directory
= you select.
</p>
<p>The following keys can be used while viewing images:
</p>
<p>The Space bar or Right Arrow keys to show the next image

The Backspace or <font

#* color='Blue'>Left Arrow keys to show the previous

v

image

The D key to select a new
'+ picture directory

The I key to show
“+ information about the image

The S key toggles
“*# starting and pausing the show

The Esc key to quit

The F1l key for help
</p>
<hr>
<p>ImageShow v.0.0.1 was developed by Timothy Marshal-Nichols
“* in May 2006. It is issued under the The GNU General Public

“» License 2.

Getting Started with Gambas Version 2: A Tutorial Page 36 of 110
timothy.marshal-nichols @ntlworld.com

</p>
<hr>
</body>
</html>

The Gambas controls that accept HTML formatting only take a subset of HTML tags. So it is
sometimes trial and error to find out what works. The following screen shot shows what this HTML
looks like in a message box when the application is run and the user presses the F1 key.

A simple image slide shuw___-E,'ﬁ

)

@ ImageShow Help

ImageShow presents a slide show of images from a directory you select.
The following keys can be used while viewing images:

The Space bar or Right Arrow keys to show the next image
The Backspace or Left Arrow keys to show the previous image
The D key to select a new picture directory

The I key to show information about the image

The 5 key toggles starting and pausing the show

The Esc key to quit

The F1 key far help

ImageShow v.0.0.1 was developed by Timothy Marshal-Nichols in May 2006. It is issued
under the The GNU General Public License 2.

That all of the elements we need for the user interface. All the rest of the applications functionality
is going to be done in code.

Getting Started with Gambas Version 2: A Tutorial Page 37 of 110
timothy.marshal-nichols @ntlworld.com

3.3: Adding the Code

There are three event we need to handle in this application. We need some set-up code when the
application opens. When the user presses a key on the keyboard we need to check the key press and,
if required, respond. We also need to update the screen image every 15 seconds when the slide show
is running.

So lets add these events to our application. The first event is easy double click on the
FormImageShow in the form designer. This will add the event Form_Open to the FormImageShow
class.

Next we shall add the event for a user key press. Right click on the on the FormImageShow in the
form designer. This will show a pop up menu. Select the Events option and then from the sub menu
select KeyPress. This will add the event Form_KeyPress to the FormImageShow class. Finally
double click on the TimerShow object on the FormImageShow. This will add the event

Timer Show_Timer event to FormImageShow class.

B FormimageShow.class 5:1 [modified] -2 When you have added these events

Mot

H < % B a g O the qumImageShow class should
E look like this screen shot.

' Gambaz class file

PIELIC EUB Form_Openi)

END

PIELIC SUB Form_ KeyPress|)

END

FIBLIC SUB TimerShow_Timer ()

Now we shall add code to the FormImageShow class. In this tutorial chapter we shall split the code
into chucks so that we can describe each section. We need two variables to store information about

Getting Started with Gambas Version 2: A Tutorial Page 38 of 110
timothy.marshal-nichols @ntlworld.com

our slide show. The first variable is a array of strings called pictureFiles. Here we shall store
the file paths to all in images in our slide show. The next variable is pictureNumber which will
hold the index number of the currently displayed image.

FormImageShow.class

PRIVATE pictureFiles AS NEW String][]
PRIVATE pictureNumber AS Integer

Continued Below

Notice that we declare these variables as PRIVATE. Later on you will see that variables declared
inside a procedure or function are declared using the DIM statement. However in Gambas when
declaring variables at module or class level you need to use the PUBLIC or PRIVATE keywords.

We shall add code to the Form_Open event we created earlier. This event fires when the form is
first shown and only fires once. It is a useful place to put any set-up code you need for a form. We
start by setting the forms background to black and making the form full screen. (Gambas version 1
users see the note below.)

We then set the changes we need to the DrawingArea. We resize the DrawingArea with the move
statement. Normally we would use the ME.ClientWidth and ME.ClientHeight properties
to get the size of the current form. In most cases these are the properties you should use. But here
they are still set to the old form size. They do not appear to become set to the values we want until
the form resize event is called. As we want the form to be full screen we can use the Desktop object
to get the values we need. The Desktop object gives us some useful information about the screen.
Also for the DrawingArea we set the Cashed property to TRUE. When this property is set the
DrawingArea will automatically handle refreshing of itself if the current picture needs to be
redrawn. This means we let the DrawingArea redraw the current picture when needed. We only need
to think about drawing when we want to change the picture.

We then call two functions. The first allows the user to select a directory from which to build a list
of images. The next function will display an image. The code for these functions is described later
on. After calling these functions we hide the mouse so it does not detract from the image.

Finally we set up the show timer. We set the delay time between images to 15 seconds. But we only
start the show timer if we have some images.

FormImageShow.class — Continued

Getting Started with Gambas Version 2: A Tutorial Page 39 of 110

timothy.marshal-nichols @ntlworld.com

PUBLIC SUB Form_Open /()

' Set form properties

ME .BackColor = Color.Black

ME.FullScreen = TRUE

' Set drawing area properties

DrawingAreaImage.Move (0, 0, Desktop.Width, Desktop.Height)

DrawingArealImage.Cached = TRUE

' Select image directory

Dialog.Path = User.Home

SelectImages ()

NextPicture ()

' Hide mouse

DrawingArealmage.Mouse = Mouse.Blank

' Start show timer

TimerShow.Delay = 15000 ' 15 seconds

TimerShow.Enabled = (pictureFiles.Count > 0)

END

Continued Below

81

sambas

In Gambas version 1 you use a slightly different method of displays the form full screen.
The ME.FullScreen = TRUE line in the above listing needs to be changed to the

following:

ME.State = Window.Fullscreen

Also to select the users home directory you use the System object.

Dialog.Path = System.Home

This next event handles any key press our application receives. When ever the user presses a key we
select the option the user wants. We use the Timer Show.Enabled property as a flag to indicate
if the image show is running or paused. For some of the key press options we want to restore the
image show to its previous state. So we store the current state in the variable timerState.

The Key object gives us information about the last key press. The Key . Code property gives us the

Getting Started with Gambas Version 2: A Tutorial Page 40 of 110
timothy.marshal-nichols @ntlworld.com

keyboard code and we can compare this with constants in the Key object in our SELECT statement.

When the Escape key is pressed we use ME . Close () to end the application. If the F1 key is
pressed we hold the image show and then display our HTML help file in a message box. When the
user closes the message box the image show state is set to the saved state.

“ 1 In Gambas version 1 the message box gets lost behind the form when the form is full

screen. So amend the code for the F1 button to the following:
Sambas

TimerShow.Enabled = FALSE
DrawingArealmage.Mouse = Mouse.Default
ME.State = Window.Normal

ME.Border = Window.Resizable
Message.Info(File.Load ("help.htm"))
ME.State = Window.FullScreen
DrawingArealImage.Mouse = Mouse.Blank

TimerShow.Enabled = timerState

The help message does not look as good as in version 2 of Gambas. But at least it does
not get lost.

The next two cases handle the user manually advancing the current image. When the user presses
the Right Arrow or Backspace key we decrement the current image counter and then call our
procedure to draw the image. Similarly if the user presses the Left Arrow or Space bar key we
increment the current image counter and then call our procedure to draw the image.

When the D key is pressed we handle the user changing the selected directory for images. First we
pause the slide show. Then we show the mouse by setting it to its default cursor. It could be
confusing to the user to keep the mouse hidden. We then call two functions that we used in the
Form Open event. The first allows the user to select a directory from which to build a list of images.
The next function will draw an image. We hide the mouse again and start the show timer if we have
some images.

The S key toggles pausing the slide show or starting it running again. When pausing the slide show
we simply disable the slide show timer. We only allow the slide show to start if there are some
images to display. If there are some images we increment the current image counter and display the
next image. This gives a visual confirmation to the user that the slide show has started running
again.

Getting Started with Gambas Version 2: A Tutorial Page 41 of 110
timothy.marshal-nichols @ntlworld.com

When the I is pressed we call a procedure that draws some information on the screen about the
current state of the slide show and the current image. This procedure is described later.

FormImageShow.class — Continued

PUBLIC SUB Form Press ()
DIM timerState AS Boolean
timerState = TimerShow.Enabled
SELECT CASE Key.Code
CASE Key.Esc
' Close the slide show
ME.Close ()
CASE Key.F1
' Show HTML help
TimerShow.Enabled = FALSE
DrawingArealmage.Mouse = Mouse.Default
Message.Info(File.Load ("help.htm"))
DrawingArealmage.Mouse = Mouse.Blank
TimerShow.Enabled = timerState
CASE Key.BackSpace, Key.Left
' Show previous picture
TimerShow.Enabled = FALSE
DEC pictureNumber
NextPicture ()
TimerShow.Enabled = timerState
CASE Key.Space, Key.Right
' Show next picture
TimerShow.Enabled = FALSE
INC pictureNumber
NextPicture ()
TimerShow.Enabled
CASE Key["D"]

timerState

Get a new slide show from a directory
TimerShow.Enabled = FALSE
DrawingArealmage.Mouse = Mouse.Default

SelectImages ()

Getting Started with Gambas Version 2: A Tutorial Page 42 of 110
timothy.marshal-nichols @ntlworld.com

NextPicture ()
DrawingArealImage.Mouse = Mouse.Blank
TimerShow.Enabled = (pictureFiles.Count > 0)
CASE Key["S"]
IF TimerShow.Enabled THEN
' If the show is running then stop it
TimerShow.Enabled = FALSE
ELSE IF pictureFiles.Count > 0 THEN
' If the show is not running and we have pictures
' then start the show with the next picture
INC pictureNumber
NextPicture ()
TimerShow.Enabled = TRUE
END IF
CASE Key["I"]
' Show some information about the show
ShowMessage ()
DEFAULT
' Nothing
END SELECT
END

Continued Below

When the image show is running a timer event will be fired. Here we increment the counter we have
for the image number by 1 and then call our function to draw the image. We wrap the drawing call
with Enabling and Disabling a timer. This is properly not needed and is a hang over from coding in
another Visual Basic. I have put this in so we reset the timer after having completed drawing the

image.
FormImageShow.class — Continued

PUBLIC SUB TimerShow_Timer ()
TimerShow.Enabled = FALSE
' Go to the next image

INC pictureNumber

Getting Started with Gambas Version 2: A Tutorial Page 43 of 110
timothy.marshal-nichols @ntlworld.com

' Draw the next image

NextPicture ()

TimerShow.Enabled = TRUE
END

Continued Below

We have called this next procedure several times above. It allows the user to select a new image
directory and loads the paths of the image files into pictureFiles array. First we call a standard
dialogue that allows the user to select a directory. Calling this dialogue is similar the way we opened
and saved files in the SimpleEdit project above. If the user does not select a the OK button and a
directory we return from the procedure. The Dialog.Path property returns the name and path of
the selected directory. If the user selects a directory we clear the old list of image files.

Using the Dir function we can obtain a list of all files in a directory. As this list is not sorted we
use the Sort () method on a string array to sort the file list. We then use a FOR NEXT construct to
loop through each of the files. The File class provides some useful method for extracting elements
from a file path. Here we want to test the file extension for each file so we use the File .Ext
method. In order to provide a case insensitive search for images we convert the extension to lower
case. We then test the file extension for the image file types supported by Gambas. If we have found
a a valid image file name then we add the full file name and path to our image file list.

When we have completed the loop we check to see if we have found any image files in the directory.
If we have not we display a message to the user. We then set the current image index to the first
image. We have a CATCH here because we are interfacing with the file system and there is the
possibility of file I/O errors. Hopefully the user will never see this error message.

We have built a list of images based upon the extension of the file. In most cases this will produce a
valid list. However just because a file has an extension of jpg does not mean it is a valid jpg image
file. A user can give a file any name they want. Hence when we display the images we shall still
need some error checking code.

FormImageShow.class - Continued

PRIVATE SUB SelectImages()
DIM fileName AS String
DIM fileList AS Stringl]
DIM fileExtension AS String

' Get the directory name from the use

Getting Started with Gambas Version 2: A Tutorial Page 44 of 110
timothy.marshal-nichols @ntlworld.com

IF Dialog.SelectDirectory () THEN RETURN

pictureFiles.Clear ()

filelList = Dir (Dialog.Path)

fileList.Sort ()

FOR EACH fileName IN filelList
fileExtension = Lower (File.Ext (fileName))

' Only select image files

IF fileExtension = "png" OR fileExtension = "jpeg" OR
fileExtension = "jpg" OR fileExtension = "bmp" OR
“+ fileExtension = "gif" OR
fileExtension = "xpm" THEN

' This is a image so add to image list
pictureFiles.Add(Dialog.Path &/ fileName)
END IF
NEXT
IF pictureFiles.Count = 0 THEN
Message.Info ("No images found in the directory:\n\n" &
* Dialog.Path)
END IF
pictureNumber = 0
CATCH
Message.Warning ("Error selecting images from: \n\n\t" &
* Dialog.Path & "\n\n" & ERROR.Text)
END

Continued Below

Although we call the NextPicture procedure several time it is not where we do the real work of
drawing the current image is done. Rather this procedure checks we have valid input for the
DisplayImage procedure. First we make sure we have some images to display. The
pictureFiles array holds the paths to the images files in our show. By making sure the Count
property is greater than zero we ensure there is something to display. We then make sure our index
for the current picture is within a valid range. If our index is greater than number of images
available then we set it to the start of the show. Similarly if our index is less than zero then we set it
to the end of the show. This way we can safely increment and decrement the pictureNumber
index in the procedures above. We know that here we shall wrap the index around the ends of the
array.

Getting Started with Gambas Version 2: A Tutorial Page 45 of 110
timothy.marshal-nichols @ntlworld.com

Remember that the index in a array starts at zero and the final element of an array is one less then
the Count property. When we have a valid index we call the Di splayImage procedure that does
all the actual drawing work.

FormImageShow.class — Continued

PRIVATE SUB NextPicture ()
' Check we have some image file paths
IF pictureFiles.Count > 0 THEN
' Limit the image number to the number of
' files in our array of file paths
IF pictureNumber >= pictureFiles.Count THEN
pictureNumber = 0
ELSE IF pictureNumber < 0 THEN
pictureNumber = pictureFiles.Count - 1
END IF
' Now draw the image
DisplayImage (pictureFiles [pictureNumber])
END IF
END

Continued Below

Drawing the image on the DrawingArea is very easy. Three objects are involved in this process. The
Image object, the Draw object and the DrawingArea control.

- Image: This class stores a bitmap type of image such as a jpg or png format image. The
most important method for us is the stretch method which allows us to resize the image if

required.

Getting Started with Gambas Version 2: A Tutorial

timothy.marshal-nichols @ntlworld.com

« Draw: You draw on a device. The device can be a any of
the following objects: Picture, Window (i.e. a Form), the
Printer, a Drawing, or a DrawingArea. You start drawing
by initializing the device you want to draw on. This is
done passing the drawing device to the Begin method.
You then set the properties required for the next drawing
action. This includes properties like selecting colors,
fonts or line styles. You then call the method to perform
the drawing action. The drawing methods include
drawing lines, rectangles, text and images. The process
of setting drawing properties and calling drawing
methods is continued until the drawing is finished.
Finally you call the End method to complete the
drawing.

Page 46 of 110

Begin (Device)

!

Set drawing
properties

I

Call drawing
method

More?

End

- DrawingArea: This control acts like visual device that we can draw on. If the Cashed
property is set to TRUE then redrawing the current image is handled automatically when the
control needs to be refreshed. This is the main reason we use a DrawingArea. You can draw
directly on a form, but then you need to handle refreshing the current image when required.

This diagram shows the relationship between the drawing objects in our application.

Image File
Jpg, png,
bmp or gif Load Image
\/ from disk

DrawingArea

L

Image

Call method
on Draw class
using Image
object

<)
A drawing device
Image drawn

on screen

Draw

When we first load the image from file. We need to put some error handling on this. The load

Getting Started with Gambas Version 2: A Tutorial Page 47 of 110
timothy.marshal-nichols @ntlworld.com

method uses the file extension to determine what kind of image to load. If the file content does not
match the file extension then we have and error. Even if the user selected some valid images it is
possible we may not have read permission on the file. This again could give use an error. If we get
an error we simply return from the procedure.

We then check the size of the image. If the image is larger then the size of the screen then we want
to scale it to fit on the screen. When scaling we want to scale isotropically which means scaling the
image by the same factor in both directions. This will keep the aspect ratio of the image. There are
two possible scaling factors we could use. Scaling to make the width fit on the screen or scaling to
make the height fit on the screen. We take the smallest of these and apply them to both the width
and the height of the image.

A more interesting problem is making sure the previous image is cleared. When a new image is
drawn it may not be the same size as the previous image. Either in the width direction of the height
direction. If all we do is draw the new image we could leave bits of the old image on the screen.
This would not look very good.

The first solution I tried was simply to use the Clear method on the DrawingArea and then draw the
image. In many cases this works fine. The Clear method clears the DrawingArea using the
Background color. The problem was for drawing large images the screen produced a noticeable
'flash' each time an image changed. You saw the background color flash over the entire screen for a
fraction of a second. This did not look very good so the Clear method had to go.

The next solution I tried was to draw a solid rectangle over the entire DrawingArea using the
background color. Then I would draw the image centred on the screen. This worked better. But you
still saw a noticeable 'flash' when a large image was drawn.

The next solution I tried was to draw the new image first. Then to draw over the rest of the screen
with the background color to clear any parts of the old image left behind. To do this we need to
draw 4 solid rectangles in the background color on each edge of the image. The following diagram
will help us calculate the size of the rectangles we need to draw.

Getting Started with Gambas Version 2: A Tutorial
timothy.marshal-nichols @ntlworld.com

Page 48 of 110

0 X1 X2 X3

Image

Width

Using this this we can see the rectangles we need to draw to clear any possible fragments of the
previous image.

Rectangle Start Point Width Height Draw Rectangle
Top 0,0 x3 yl Rect(0, 0, x3, y1)
Bottom 0, y2 x3 y3-y2 Rect(0, y2, x3, y1)

Note that: yl =y3 -y2
Left 0,0 x1 y3 Rect(0, 0, x1, y3)
Right x2,0 x3 -x2 y3 Rect(x2, 0, x1, y3)

Note that: x1 =x3 - x2

(Our rectangles overlap in the corners. You could make the application more efficient by reducing

the size of some of the rectangle. But I do not think it is worth it. I doubt the user would ever notice
a speed difference. Compared with the time taken to load, scale and draw the image, drawing the
rectangles is very fast. Also you run the risk of leaving lines that have not been cleared across the
screen at the joins of rectangles. This could occure if there are any rounding errors in your
calculations.)

The final method that might be tried is to use a Picture object as a drawing buffer. With this method
you would create a Picture object the size of the DrawingArea. Set the Picture objects background to
the DrawingAreas background color. Then draw the image centred on the Picture object. The final
step would be to draw the Picture object on to the DrawingArea. Again this works. But it did not
provide a solution any better than the previous method we looked at. So for the final version of the

Getting Started with Gambas Version 2: A Tutorial Page 49 of 110
timothy.marshal-nichols @ntlworld.com

code we have used that method of clearing any previous image. The code listing for drawing and
image follows.

-@- Some version of Gambas may require the the line:
e TRY currentImage.Load (ImagePath)

to be:
TRY currentImage = Image.Load (ImagePath)

as the syntax of the load function has changed.

FormImageShow.class — Continued

PRIVATE SUB DisplayImage (ImagePath AS String)
DIM currentImage AS NEW Image
DIM scale AS Float
DIM x1 AS Integer
DIM x2 AS Integer
DIM x3 AS Integer
DIM y1 AS Integer
DIM y2 AS Integer
DIM y3 AS Integer
' Load the image
' Some version of Gambas may require this line to read
'TRY currentImage = Image.Load(ImagePath)
TRY currentImage.Load (ImagePath)
IF ERROR THEN RETURN ' If we can not load the image then give up
' Check if the image is larger than the screen
IF (currentImage.Width > DrawingArealImage.ClientWidth) OR
(currentImage.Height > DrawingArealImage.ClientHeight) THEN
' Scale image to fit on the screen
scale = Min (DrawingArealmage.ClientWidth / currentImage.Width,
+ DrawingArealmage.ClientHeight / currentImage.Height)
currentImage = currentImage.Stretch(currentImage.Width *
'+ scale, currentImage.Height * scale)
END IF
'

Calc rectangles points

x1 = (DrawingArealmage.ClientWidth - currentImage.Width) / 2

Getting Started with Gambas Version 2: A Tutorial Page 50 of 110
timothy.marshal-nichols @ntlworld.com

x2 = x1 + currentImage.Width

x3 = DrawingArealmage.ClientWidth

vyl = (DrawingArealImage.ClientHeight - currentImage.Height) / 2
y2 = yl + currentImage.Height

y3 = DrawingArealmage.ClientHeight

' Draw image

Draw.Begin (DrawingArealmage)

Draw.Image (currentImage, x1, y1l)

' Draw rectangles over the area not covered by the new image

Draw.BackColor = DrawingArealmage.BackColor
Draw.ForeColor = DrawingArealmage.BackColor
Draw.FillColor = DrawingArealmage.BackColor

Draw.FillStyle = Fill.Solid
' Draw top rectangle
Draw.Rect (0, 0, x3, yl)
' Draw bottom rectangle
Draw.Rect (0, y2, x3, yl)
' Draw left rectangle
Draw.Rect (0, 0, x1, y3)
' Draw right rectangle
Draw.Rect (x2, 0, x1, y3)
Draw.End

END

Continued Below

The final procedure we have draws an information message about the slide show. This is called
when the user presses the I key. First we build the string for the message. We add some information
about if the show is running or paused. If it is running we add information about the time interval
between images. We then show some information about the current image. We show the current
picture number and the total number of images as well as the image path. Note that we add one to
the current image index because the string array index for the image paths starts at zero.

Next we calculate the screen position for the message. We want to place the message at the bottom
of the screen and in the centre. We will draw this message using the default font. We use the
TextWidth and TextHeigh methods on the Draw object to get the size of the text. We can then
calculate the position for the text. The left position for the text will be half the width of the screen

Getting Started with Gambas Version 2: A Tutorial Page 51 of 110
timothy.marshal-nichols @ntlworld.com

minus the width of the text message. The top position for the text will be the height of the screen
minus the height of the text.

We want to make sure the text is visible. If we simply drew the text it could be over any color that
forms the background. So first we draw a filled rectangle as the background. Then we draw the text
on top of this rectangle at the position we have calculated.

FormImageShow.class - Continued

PRIVATE SUB ShowMessage ()
DIM message AS String
DIM x1 AS Integer
DIM yl1 AS Integer
DIM messageWidth AS Integer
DIM messageHeight AS Integer
' Get the information message

IF TimerShow.Enabled THEN

message = "Show Running (Every " & CInt (TimerShow.Delay /
“* 1000) & " seconds) "
ELSE
message = "Show Paused: "
END IF

IF pictureFiles.Count > 0 THEN

message &= "Picture: (" & (pictureNumber + 1) & "/" &
' pictureFiles.Count & ") " & pictureFiles|[pictureNumber]
ELSE
message &= "No pictures"
END IF

' Draw the information message

Draw.Begin (DrawingArealmage)

' Calc message position

messageWidth = Draw.TextWidth (message)

messageHeight = Draw.TextHeight (message)

x1 = (DrawingArealmage.ClientWidth - messageWidth) / 2 ' Center
“* of screen

yl = DrawingArealmage.ClientHeight - messageHeight ' Bottom of

Getting Started with Gambas Version 2: A Tutorial Page 52 of 110
timothy.marshal-nichols @ntlworld.com

» screen

' Draw the message background

Draw.ForeColor = Color.LightGray

Draw.FillColor = Color.LightGray

Draw.FillStyle = Fill.Solid

Draw.Rect (x1, yl, messageWidth, messageHeight)

' Draw the message text

Draw.ForeColor = Color.Black

Draw.Text (message, x1, yl)
Draw.End

END

3.4: Running the project

The project is now complete so lets run it. You run the project by clicking on the green Run button
in the project manager window or by pressing the FS key. A dialogue should open asking you to
select a directory. Select a directory with some images in png or jpg format. Watch the show!

We now need to test the application works as expected. So run the application and select a image
directory. Then press the D key to change the image show directory. Test the application with the

following kinds of directories:

Open Image Directory Tests

Test
Open a directory with images in it.
Try an empty directory.

Try a directory with no images but some
other file types.

A directory with some jpg image files.
A directory with some jpeg image files.
A directory with some png image files.
A directory with some gif image files.

A directory with some bmp image files.

Expected Result Pass/Fail
Image show displayed.
A no images found message.

A no images found message.

Image show displayed.
Image show displayed.
Image show displayed.
Image show displayed.
Image show displayed.

Getting Started with Gambas Version 2: A Tutorial
timothy.marshal-nichols @ntlworld.com

Open Image Directory Tests
Test

A directory with some xpm image files.

Expected Result
Image show displayed.

Page 53 of 110

Pass/Fail

Make sure in all of the above tests that the application does not try to open any files that are not
images and that all the images are shown. The application should not crash and you should be able
to select another directory. We now will test all the other keys perform the correct action.

Key Press Tests
Test

With an image show press the space bar.

With an image show press the right arrow.

With an image show press the backspace
key.

With an image show press the left arrow.

With the show running press the S key.

With the show paused press the S key.

With the show running press the I key.

With the show paused press the I key.

With the show running press the F1 key.

Press the Esc key.

Expected Result
Next image should be displayed.
Next image should be displayed.

Previous image should be displayed.

Previous image should be displayed.

The show should pause. (Wait more than
15 seconds to make sure.)

The next image should be displayed and
the show start running.

An information line should be shown. It
should say the show is running and give
the current image name.

An information line should be shown. It

Pass/Fail

should say the show is paused and give the

current image name.

A help message should be displayed and
also the mouse. When the message is
cleared the mouse should be hidden.

The application should close.

Finally for this project we a going to create a executable version of the application. This way you
can run ImageShow outside the Gambas development environment. First make sure you have
completed all the testing described above. Then in the Gambas project manager select the Project
menu and then the Make executable... sub menu. This will show a standard dialogue asking for the
name of a file. Accept the defaults and click the OK button.

Getting Started with Gambas Version 2: A Tutorial Page 54 of 110
timothy.marshal-nichols @ntlworld.com

== ImageShow - Kongueror, This will create an

Location Edit View Go Bookmarks Tools Settings Window execptal?le \{CI‘SIOI’I of ypur
application in your project

directory called
I ImageShow.gambas.

Help

QOO O & Q) E E

k@ Location: iEl:Il:lk,l'P'rl:IjEEE,I'ChEptEF—Ul-SiEF‘FDjElﬂS,l'h‘l‘lEQEShDW - AJ

K_H‘" + GaH =
{ For
i FormlmageSsh FormlmageSh
ow.class ow.form
E help.htm Imageshow. F
& ambas
1] v
=
& ImageShow.gambas (4.8 KB) HTML Document

In Unix/Linux the your home bin directory is a good place to store your personal applications and
scripts. On most system this directory is in your PATH so it will be searched when you enter
commands from a terminal. Move the file ImageShow.gambas that we have just created in your

project directory to your SHOME/bin directory.

C] timothy@linux:~ - Shell - = . Now open a terminal window and type
' ImageShow.gambas & and our
application should start. The & after the
t il'ﬂl:lt]'ll_.j@l inux:" > IMEIHES}]DIJ.I 5 gElI'ﬂhElS & | command is so the terminal does not
[1] 4272 wait for the ImageShow process to end.
It is not required to start ImageShow.

Session Edit View Bookmarks Settings Help

timothy@linux:™> [

| shell

—@— Not all Linux distribution have a SHOME/bin directory.

On some distributions you can cd to the directory where the executable contained. Then
type ./ImageShow.gambas and the executable should run.

On some distributions you need to give the full path to the executable. If the executable
was in a directory call Images in our home directory then try:
$HOME/Images/ImageShow.gambas

Getting Started with Gambas Version 2: A Tutorial Page 55 of 110
timothy.marshal-nichols @ntlworld.com

One reason I wanted to create a executable for this application was to demonstrate that files in the
data section of a Gambas project are included in the final executable. And that they use the relative
path within the application for their file location. To prove this works press the F1 key and view the
help. This should correctly load the HTML help file we created and load it into the message box for
display.

You could also add a link to this executable on your desktop. This would allow you to run our
application by clicking on an icon. How you do this is dependent on the window manager you are
using. See the help for your window manager.

Getting Started with Gambas Version 2: A Tutorial Page 56 of 110
timothy.marshal-nichols @ntlworld.com

4: & Database Project: Notations

Microsoft Visual Basic became very popular on the Windows platform. One reason for this success
is that Microsoft Visual Basic was a good front end for database applications. Many users, like
myself, coming from the Windows world to Linux will have experience of developing applications
with Visual Basic to act as a user interface to a database. They will want to transfer these skills to
Linux. In this example we are going to get you started with a small project to communicate with an
SQLite 2 database. With Gambas you can use almost the same code to communicate with a MySQL
or PostgreSQL database. With later versions of Gambas you can also connect to a SQLite 3, ODBC
or Firebird database.

As with installing Gambas this tutorial
will not cover installing SQLite. SQLite
should be installed with most Linux
timothy@linux:™> sqlite -version distributions. In order to check you have
il ﬁ;ﬁgm o SQLite insta}lled on your work§tation
open a terminal and type sglite
—-version. If a version number is
returned then SQLite is installed.

Sesion Edit View Bookmarks Settings Help

|| (i) shell

Note that this will check if version 2 of SQLite is installed. We are using version 2 because it is
supported by more versions of Gambas. Newer version of Gambas also work with SQLite version 3.
You can check for SQLite version 3 with sqlite3 -version.

If SQLite is not installed then you should be able to install it through you package manager or visit
the SQLite web site at http://www.sqlite.org/. If you are new to SQLite it is also worth looking at
the documentation on this web site.

There are two possible approaches you could take to interfacing with a database in Gambas. The
first is to use the Gambas database objects. With this method your code would perform the
following actions:

Create the database in Gambas using the connection object.
Build the database tables, indexes, etc. using the Gambas database objects.

- Read data from the database using the Result object. You would create the Result object
using the Find or Edit method on the database connection.

- Update and Delete actions on records would be through the Result object. You would create

http://www.sqlite.org/

Getting Started with Gambas Version 2: A Tutorial Page 57 of 110
timothy.marshal-nichols @ntlworld.com
the Result object using the Edit method on the connection.

Adding records would be through the Result object. You would create the Result object
using the Create method on a connection.

This approach has the following advantages:
You are abstracted from the database layer.
You do not need to know much SQL (Structured Query Language).

Your code is portable between the databases supported by Gambas. You should only need to
change the connection parameters to switch database types.

It also has a few disadvantages:

Search and filtering data is more awkward and is less well supported than directly using
SQL.

Views and database queries requiring more than one table are not as well supported as in
directly using SQL.

There are some features of the underlying database that you can not access.

For most kinds of database application the above method is the best. However there is a second
method you could use. With this method you would be to use the Exec method on the connection
object to send SQL statements to the database. With this method your code would perform the
following actions:

There are two possible method you could use to create the database.
Create the database using tools provided by the database vendor or a third party.

Create the database in Gambas and build the tables, indexes etc. using a SQL script.
Send this script to the connection Exec method.

You would read data from the database using the Exec connection method using a SQL
query and return this data to a read only Result object.

Update, Insert and Delete should also be preformed using the SQL statements sent to the
Exec connection method.

The advantages are:

You gain fine grained control over the database. You control the detail of each SQL query or
command.

Most databases support more field types for tables than are supported by Gambas.
Features in the database not supported in Gambas are easily accessible.
It is easy to access database views and multi table queries.

Possible disadvantages are:

You need a good knowledge of SQL for your target database.

Getting Started with Gambas Version 2: A Tutorial Page 58 of 110
timothy.marshal-nichols @ntlworld.com

You need to format the data yourself when sending or receiving it from the database. For
example you need to make sure dates are in a format understood by the database.

« You need more careful error handling to catch SQL errors. Debugging the SQL is also more
complex.

+ Your application is properly not portable if you need to switch database types.

Which method should you chose? My general advice would be:

If you only require a small database or you need portability between databases then stick to
the first method. In this case try to avoid using the Exec method of obtaining data or passing
SQL queries to the database.

- If you have a large database and the database type is not likely to change then consider the
second method. Also consider the second method if your database queries are going to be
large or complex. If you select the second method only use the Connection and Result
objects and only use the Exec method to perform queries.

I would not mix the two approaches. Of course there is nothing to stop you if you really want to. But
you could end up with none of the advantages of either method and all of the disadvantages.

In this tutorial we are going to demonstrate the first of these methods. This is after all a tutorial
about Gambas and not SQL. Also we can then demonstrate more of the Gambas database objects
you might want to use.

—\(éj— In a Appendix to this tutorial we shall look at how to convert this Notations example to
the second approach using Exec and SQL statements.

A common form of interface design for a database is the Master/Detail design. Here you have a list
of records in a window. There is some field from the database that summarises the database records
and this is used to create a list. When a record from the list is selected its details are displayed in the
rest of the window. If required the details can be updated and saved to the database. There will also
be some mechanism for adding and deleting records. This Notations example will follow this basic
interface design to a database application.

With this example we are going to create a note taking application. We shall store the notes in a
SQLite database. The user should be able to:

« Add notes.

- View notes.
Update notes.
Delete Notes.

Cut, Copy and Paste text from the Clipboard to and from notes.

Getting Started with Gambas Version 2: A Tutorial Page 59 of 110
timothy.marshal-nichols @ntlworld.com
View a list of note titles. You can then click on a note title to view the complete note.

Search the text in note titles and notes for a given search text.

We shall keep our database very simple. The database name is going to be the same as the
application name. We shall only need one table and this will be called “Notes”. The following entry
lists the fields in the table.

Field Name Type Comment
CreateDate DATETIME Primary Key. When a new note is first created this will be
set to the current date and time.
LastModified DATETIME When a note is first created this will have the same value

are the CreateDate field. Each time a note is updated this
field will be set to the current time.

Title STRING Length O for a unlimited string

Note STRING Length O for a unlimited string

Priority INTEGER Priority encoded as an integer. O is low, 1 is medium and 3
is high priority.

@ Notations is named after a piece of music by the French composer Pierre Boulez

originally written in 1945. This early work was a set of 12 short pieces for piano. Later,
in 1978, Boulez orchestrated four of the pieces for large orchestra. He revised them
again in 1984. Then added an additional orchestration in 1997. Given the name, the
history of the music and the fact that Boulez is French and so is the main developer of
Gambas, Benoit Minisini, this seemed a good name for a note taking application.

4.1: Creating the project

The first step is to create a new Gambas project. So open Gambas and and select New project....
This will start the new project wizard. The first page of the wizard simply shows a welcome screen
with details of how to use the new project wizard. Click the Next >> button to for the next page of
the wizard. This shows a page were we can select the type of Gambas project we want to build. We
are going to use the default option of a graphical project. So click the Next >> button. This shows a
page when you enter the name and title for your project we are going to create.

Getting Started with Gambas Version 2: A Tutorial Page 60 of 110
timothy.marshal-nichols @ntlworld.com

' Create a new project -2

Select the name of the project

INntatinns |

Select the title of the project

[Nntatinnsa note taking application]

Options
[| Projectis translatable

|:| Form controls are public

[<< Previous][Mext ==

Give the project the name Notations and the title Notations a note taking
application. Leave the other options blank. Click on the Next >> button. Select the location
where you want to save the project. Then click the Next >> button. This final page lists the options
you have selected for the project. Check through the options and then click the OK button. We have
created a new Visual Basic project and Gambas will open showing the Gambas project manager.

With this project we are going to use a tool bar to display some buttons. Tool bars can provide a nice
looking interface to the user and take up little space. So we shall need some icons for these buttons.
The Tango project aims to provide a common look and feel to the desktop. It also provide a good
icon set for use in your applications. You can get the required icons from the example applications
that come with this tutorial or the Tango web site http://tango-project.org/. This site also provides
useful information about designing and using icons.

Go to the project directory and create a sub directory called Images. In this directory place the
following icons from the Tango icon set.

http://tango-project.org/

Getting Started with Gambas Version 2: A Tutorial Page 61 of 110
timothy.marshal-nichols @ntlworld.com

© [Egtango-icontheme-051 The tango icons are grouped into size and then category, Select the

= [E916x16 icons shown in the following table and place them in the Tmages
BRactions directory.
[Edapps
categu:uries
[ESdevices Icon Size Icon Category Icon Name
[Efemblems - - - -
[Eemates 16 x 16 actions dialog.information.png
[Edmimetypes 16 x 16 status media-record.png
status .

o Eg22x22 22 x22 actions document-new.png

 Eacti document-save.pn
[Efactions png
Eapps edit-find.png
[EScategories view-refresh.png
ESdevices 22x22 apps accessories-text-editor.png
Emblems help-browser.png
g5 ermotes
[Emimetypes 22 x 22 mimetypes x-directory-trash.png
status
=Ll The following screen shot shows how the Images directory should
[ESscalable look after copying these icons.

= I"-.Iu:ntaticnns =N

4 Q L

ACCess0ries dialog- daocument-
text-editor.p... infoarmation.... New.pnog
= =
¥ a ©
docurment- editfind.png help-browser.
sEVe.png png
=
- [@
media- view-refresh. E-directory-
record.png pna trash.png

From the project manager window open the Project menu and then the Properties... sub menu.

Getting Started with Gambas Version 2: A Tutorial
timothy.marshal-nichols @ntlworld.com

Page 62 of 110

@ Caompile
&b Compile All
[Make executable...
Make source archive...
ﬂ Make installation package...

3 Refresh

F7
Al+FT
Ctri+Alt+M

Alt+Return

B Properties...

This shows the project properties dialog. Select the Gambas icon and then select the

Images/accessories—-text—-editor.png icon from the Images directory we created

above.

Select a picture =

File

@ sNutations

Look in [:k.n'ijec15.|'Chapter-UE-Databases.ﬂNutatiunsjlmages vl B

[
Lk

B Images

acceszor|es-bextad Ibor. png

editclear.png

<]

document-new. prg

<]

edbcopy. prg @

[a ccessoriestext-editor.png

]| oK

Filters [Picture files

|v][Cancel]

Click on the OK button. The Project Properties should now show the accessories-text-

editor.pngicon.

Getting Started with Gambas Version 2: A Tutorial Page 63 of 110
timothy.marshal-nichols @ntlworld.com

B

B Project properties - Notations -2

@& General l [Properties | g Components) Translation l

Notations
Mhomeftimothy/GambasEook/Projects/Chapter-09-Databases

Title [Nutatiuns a note taking application]
verson (0] vt
Description

= [cancel |

..................................

In the previous two applications we only used the standard Gambas components. However there are
many more controls and components available. We are going to add the gb.db - Database access
component to the project. These will give us access to the Gambas database objects and provide the
interface to the database. Select the Components tab on the previous dialog.

Getting Started with Gambas Version 2: A Tutorial

timothy.marshal-nichols @ntlworld.com

i Project properties - Hutatiuns_:

El Show only components used in project

[sGeneral 5l Properties ‘ﬁCDmPDHEHE I g Translation l

gh Gambas internal native classes

Database access component

Authors: Benoit Minisini, Nigel Gerrard

D gh.compress Compression library
D gb.crypt MDS/DES crypting component
Database access component
D gb.debug Gambas application debugger helper
D ghb.eval Gambas expression evaluator
D gb.form More controls for graphic components
D gb.info Infarmation about installed cumpunen%
M ab.net Metworking component
gb.db

QK][Cancel]

Page 64 of 110

Make sure the gb.db - Database access component and item is checked. Then click the OK button

to accept this dialog.

4.2: Creating the user interface

This application is only going to have one window as the interface. This interface is going to be
slightly more complex than the previous two examples. In order to give us some idea of what we are
working towards here is a screen shot of the look of the form when we have added all the controls

and it is in design mode.

Getting Started with Gambas Version 2: A Tutorial Page 65 of 110
timothy.marshal-nichols @ntlworld.com

FormiNotations.form [mo<l itied] .r—_..'ﬁ

D @ @ [TextB oxl] &l @

" --Labell fococeoes

-

[Columnviewl TextBox2 | SR

roo
Labelz () RadioButtonl () RadioButton2 (®) RadioButton3 [---- - -

LabE|2 :

Texthreal Lo

Click in the project manager window and create a new form. Call the form FormNotations and
accept the option for this to be a startup class.

Getting Started with Gambas Version 2: A Tutorial Page 66 of 110
timothy.marshal-nichols @ntlworld.com

New form =

S

Mew Existing

Name 5

=58

— =

|F|:|rn'|l"-]n:|tatin:|n5 | o= o)
Options

IE| Startup class

|:| Default dialog management
[] Constructar

|:| Destructar

[] static constructor

|:| Static destructor

[(8] 4][Cancel]

We are first going to create some buttons in a tool bar to go across the top of the form. So select the
Container tab in the Gambas toolbox. From this select the HPanel and add this to the top of the
form. Resize this control so it is 42 pixels heigh and the width is a bit less than the width of the
form. The exact width does not matter as this will be controlled at runtime.

To resize controls first click on the required control. This will show eight resizing boxes. Then click
and drag one of these resizing boxes with the mouse. If you have the Gambas properties window
open you will see the Height and Width properties change. You can also edit these properties
directly in this window.

-@— In this project we are going to add quite a few controls that need to be place inside a
| parent control. It all to easy to place the new control above the parent container rather
than inside the parent container. The form will still look correct in design mode but
unfortunately the controls will not resize correctly at run time. Try to follow this little
sequence each time you add a child control to a parent container control:
«+ Click on the parent control. Make sure it is highlighted and its eight resizing
boxes as visible.
« Then click on the tool box control you are going to add.
« When you click and drag the mouse to add the control make sure you are inside
the required parent control. Also make sure the eight resizing boxes are still

Getting Started with Gambas Version 2: A Tutorial Page 67 of 110
timothy.marshal-nichols @ntlworld.com

visible.
It is a good idea every so often to move the parent control you are adding child controls
to. Then move it back to its desired position on the form. When you do this check all
child controls move with the parent. If any child control does not move with its parent
then it is properly not placed correctly inside the parent control. Try adding the the
misplaced child control again.

The next step is to add the buttons we want in our tool bar. Select the Form tab in the Gambas
toolbox. The first button is going to be our new note button. Now click on the ToolButton and add
this to the HPanel we have just added. Make sure this button is inside the HPanel and not above the
HPanel. Move this button so it is at the far left of the HPanel and is 42 pixels heigh and 42 pixels
wide. Now add two more ToolButton to the HPanel these are going to be our Delete button and our
Refresh button. Move each button so it is 42 pixels heigh and 42 pixels wide and placed next to the
previously added button. We should now have three buttons in the HPanel.

The next button to add is the Search button. We are also going to add a TextBox next to this button
in which to place the notes search text. When the HPanel is resized at run time it will move controls
onto an additional line if they do not fit on the width of the control. This is nice behaviour and
means we can keep all of our buttons visible no matter how wide the user resizes our form window.
What would also be nice is if the Search button and TextBox were always next to each other when
this resizing takes place at run time. We can achieve this by placing these two controls inside a
Panel which is inside our HPanel. This search panel will not be visible at run time.

So lets add these Search controls. Select the Containers tab in the Gambas toolbox. From this
select the Panel and add this to the HPanel. Move this Panel next to our Refresh button and set its
height to 42 pixels and its width to about 224 pixels. Select the Form tab in the Gambas toolbox.
Add a ToolButton inside this search Panel. Move it to the left of the search Panel and resize the
button so it is 42 pixels heigh and 42 pixels wide. Now add a TextBox to the search Panel. Resize
this text box so it is height is 21 and its width is 168. Also make sure its X value is 42 and its Y
value is 14. You may need to use the Gambas properties window to change some of these values.

The final part of our tool bar is two more buttons. These will be for updating a note and a help
dialog button. Select the Form tab in the Gambas toolbox. Place two ToolButtons inside the
HPanel next to the search Panel. Resize each button so it is 42 pixels heigh and 42 pixels wide.

That has added all the controls we need for our tool bar. Now we shall add the controls that form the
main part of our window and display our notes. On the left side of the form window we are going to
have a list of notes. On the right side we are going to have the details of the currently selected note
in the list. In order for the user to resize each half of our form window we are going to use a HSplit
control. Select the Containers tab in the Gambas toolbox. Add a HSplit to the form under the
HPanel. We shall be adding more controls to the HSplit so make it large enough for this. Its exact
size does not matter as it will be resized at run time.

Getting Started with Gambas Version 2: A Tutorial Page 68 of 110
timothy.marshal-nichols @ntlworld.com

“' In Gambeas version 1 the HSplit control is not available so we shall have to miss it out.

This means the user will not be able to resize the two half's of the window with the
central bar. Place the ColumnView we add next directly on the form. Also we directly
place second panel we add later directly on to the form.

Gambas

We are going to use a ColumnView to provide the list of notes. At run time we shall set the column
titles and content for this list. So select the Form tab in the Gambas toolbox. Then add a
ColumnView to the HSplit and make sure it is inside the HSplit. Push the ColumnView to the top
left corner of the HSplit and make its width about a quarter of the HSplit. One of the nice things
about using the HSplit control is that the resizing of the ColumnView will be handled by the HSplit
control when it is resized. We shall not have to add and code for this.

This next group of controls is where we shall display a particular note. We first need to add another
Panel so the HSplit groups these controls together at run time. Select the Containers tab in the
Gambas toolbox. Then add a Panel to the HSplit. Push the panel to the top of the HSplit and next to
the ColumnView. Make the size of the Panel covers most of the area of the HSplit not occupied by
the ColumnView.

The final set of controls to add will show the details for a particular note. All these controls go
inside the Panel we have just added. Select the Form tab in the Gambas toolbox. Now add these
controls to our Panel.

These next controls are for the title of the note. Add a Label to the top of the Panel. Under the
Label place a TextBox.

Now add some controls where the user can select the priority of a note. Add another Label under
the TextBox and then along side this add three RadioButtons.

These next controls are for the content of the note. Add another Label under the Priority Label and
then a TextArea under this Label.

We are not done with these controls yet. We need to change some of their properties. So make sure
the Gambas properties window is displayed. Click on each control in turn and change the required
properties. This is a list of all the properties we need to change. (Gambas 1 users should skip the
HSplitl control.)

Getting Started with Gambas Version 2: A Tutorial Page 69 of 110
timothy.marshal-nichols @ntlworld.com

Default Name Property New Value
FormNotation Icon Images/accessories-text-
editor.png
Border Resizeable
HPanell Name HPanelTools
ToolButton1 Name ToolButtonNew
ToolTip Create a new note
Picture Images/document-new.png
ToolButton2 Name ToolButtonDelete
ToolTip Delete the selected note
Picture Images/x-directory-trash.png
ToolButton3 Name ToolButtonRefresh
ToolTip Refresh the notes list
Picture Images/view-refresh.png
Panell Name PanelSearch
ToolButton4 Name ToolButtonSearch
ToolTip Search notes for text
Picture Images/edit-find.png
TextBox1 Name TextBoxSearch
Text <blank>
ToolButton5 Name ToolButtonUpdate
ToolTip Update current note
Picture Images/document-save.png
ToolButton6 Name ToolButtonHelp
ToolTip Display help
Picture Images/edit-undo.png
HSplitl Name HSplitWindow
ColumnView1 Name ColumnViewNotes
Sorted True
Panel2 Name PanelNote
Labell Name LabelNoteTitle
Text Title:
TextBox2 Name TextBoxTitle

Text <blank>

Getting Started with Gambas Version 2: A Tutorial Page 70 of 110
timothy.marshal-nichols @ntlworld.com

Default Name Property New Value

Label2 Name LabelNotePriority
Text Priority:

RadioButton1 Name RadioButtonHigh
Group RadioButtonPriority
Text High

RadioButton2 Name RadioButtonMedium
Group RadioButtonPriority
Text Medium

RadioButton3 Name RadioButtonLow
Group RadioButtonPriority
Text Low
Value True

Label3 Name LabelNoteText
Text Note:

TextAreal Name TextAreaNote
Text <blank>

In order to test our work so far lets add a small amount of resizing code code to the project. Right
click on the form and add a Form_Res1ize event. Now right click on the HSplitWindow object
and add a HSplitWindow_Resize event. In these two event handlers add the following code.

“ Gambas version 1 users would only add the Form_Resize event. Also the resizing

code is a little different — see below.
Gambas

FormNotations.class

PUBLIC SUB Form_Resize()

HPanelTools.Width = ME.ClientWidth

HSplitWindow.Move (0, HPanelTools.Height, ME.ClientWidth,
“+ ME.ClientHeight - HPanelTools.Height)
END

PUBLIC SUB HSplitWindow_Resize ()
TextBoxTitle.Width = PanelNote.ClientWidth

Getting Started with Gambas Version 2: A Tutorial Page 71 of 110
timothy.marshal-nichols @ntlworld.com

TextAreaNote.Resize (PanelNote.ClientWidth,
“*# PanelNote.ClientHeight - TextAreaNote.Top)

END

“ Our resizing code is slightly different for Gambas version 1. This is because we had to
omit the HSplit control.

Sambas

FormNotations.class

PUBLIC SUB Form_Resize ()
HPanelTools.Width = ME.ClientWidth
ColumnViewNotes.Top = HPanelTools.Height
ColumnViewNotes.Height = ME.ClientHeight -
#* ColumnViewNotes.Top
PanelNote.Top = ColumnViewNotes.Top
PanelNote.Width = ME.ClientWidth - PanelNote.Left
PanelNote.Height = ColumnViewNotes.Height
TextBoxTitle.Width = PanelNote.ClientWidth
TextAreaNote.Resize (PanelNote.ClientWidth,
* PanelNote.ClientHeight - TextAreaNote.Top)
END

Now it is time to test the work we have done so far. Hit the green run button in the project manager
or press the F5 key. The application will do very little. But you should be able to grab the central
bar between the ColumnView and the TextArea panel and the controls will resize themselves
correctly. (At least for Gambas 2 users.)

Getting Started with Gambas Version 2: A Tutorial Page 72 of 110
timothy.marshal-nichols @ntlworld.com

—@— You should also be able to resize the form window B Hierarchy -2

Al . . =
and the controls will resize themselves. If they do not

then the most likely reason is that some controls are

not correctly inside their containers.

m Forrm Mobatbions

=", HPanelTools

@ Tool Button Mew
i ToolButton Delete
i ToolBubbon Refresh

You can check this using the Gambas Hierarchy tool.

Pa nzlSesrch

In design mode select the form. Now from the @) ToolButtansearch
Gambas project manager select the View menu and she TextBoxSearch
then the Hierarchy option or press Ctrl+H. Check @ ToolButton U pate
the controls hierarchy on your form matches the B TeolButon et
screen shot on the right. B e Hspiewindon

" Columnyiewhoes
= . Pa nel Mok
If a control is not at the right level in the hierarchy A toveinamrie
then click on the offending control. Press Ctrl+X to =i
cut the control. Then select the correct parent control
and press Ctrl+V to paste the control into its correct

A LabeiFrioniey
@ RadioEuttonHigh

@ RadlcBubbon Madium

container. @ RadioButton Low
A\ LabeitopeTexr
. Texbareshoke
LT Bring to foreground Home If a control is at the right level in the
L Send to background End hierarchy but not in the right order then
=+ Horizontal Ctrl+Right Right click on the parent control and
this will show a popup menu. Select the
44 Vertical Ctri+Down Arrangement option and this will show
Uy Top to bottom Ctri+5hift+Down a sub menu. In this menu select Left to
Hierarchy Ctrl+H right. This will reorder the child control

in the order they are on the form.

We want to show some help informations to the user when they click on the help button. We are
going to use the same method as the previous project. This method is suitable when the required
amount of help is small and will fit on one page. The Gambas message box is quite a flexible class
and will take a HTML formatted message. So with the single line of code:

Message.Info(File.Load("help.htm"))
we can display a HTML file.

So let create the HTML file in Gambas. Right click in the Gambas project manager. This brings up
a pop up menu. From the list select New. This shows a sub menu with the items we can add to our
project. We need to add a Text file so select Text file... from this menu. Give the file the name
help.htm and press the OK button to save it. This will add the file to the data section of your
project and will open the new text file in the Gambas text editor window. Enter the following HTML

Getting Started with Gambas Version 2: A Tutorial Page 73 of 110
timothy.marshal-nichols @ntlworld.com

into the text editor and save it. Note that, as before, the “# icon in the following listing means this
line is a continuation of the previous line.

help.htm

<html>
<head>
<title>Notations Help</title>
</head>
<body>
<h2>Notations Help</h2>
<hr>
<p>Notations is a simple note taking application. The
‘* following buttons are in the tool bar:
</p>
<p>The New button will create
“* a3 new note

The Delete button will
“*# delete the currently selected note

The Refresh button will
show all available note in the notes list

The Search button will
“# find all notes with the search text in a note or note title

The Save button will
“# update the current note

The Help button will show
“¢# this help
</p>
<hr>
<p>Notations v.0.0.1 was developed by Timothy Marshal-Nichols
“# in May 2006. It is issued under the The GNU General Public
‘“# License 2.
</p>
<hr>
</body>
</html>

Getting Started with Gambas Version 2: A Tutorial Page 74 of 110
timothy.marshal-nichols @ntlworld.com

The following screen shot shows what this HTML looks like in a message box when the application
is run and the user presses the help button.

I Notations a note taking application -2

o

\il) Notations Help

Motations is @ simple note taking application. The following buttons are in the tool bar:

The Mew button will create a new note

The Delete button will delete the currently selected note

The Refresh bufton will show all available note in the notes list

The Search button will find all notes with the search textin a note or note title
The Sawve button will update the current note

The Help button will show this help

Motations v.0.0.1 was developed by Timothy Marshal-Michols in May 2006. Itis issued under
the The GNU General Public License 2.

There is one final file we need. When we create the notes database we shall also add a first note.
This will be a welcome note giving the user some help information. As the text for this note is going
to be more than a few line we are going to load the text from a file. This method of loading the text
from a file will be very similar to that used for the help. This also gives us a great deal of flexibility
if we need to change this application in the future. We can easily incorporate text changes to the
welcome help text.

Right click in the Gambas project manager and select the menu to add a new text file. This time give
the file the name Welcome . txt and press the OK button to save it. This will add the file to the
data section of your project and will open the new text file in the Gambas text editor window. Enter
the following text and save the file. As you will notice it is very similar to the help text.

Welcome.txt

Getting Started with Gambas Version 2: A Tutorial Page 75 of 110
timothy.marshal-nichols @ntlworld.com

Welcome to Notations. A simple note taking application
The following buttons are in the tool bar:

The New button will create a new note

The Delete will delete the currently selected note

The Refresh will show all available note in the notes list

The Search will find all notes with the search text in a note or
* note title

The Update will save the current note

The Help button will show help

Notations v.0.0.1 was developed by Timothy Marshal-Nichols in
= May 2006.

It is issued under the The GNU General Public License 2.

So we created all the item we need for the user interface to this application. We have only needed 7
line of code (and 4 of them beginning and end's to procedures) to get a decent interface. It shows
that with a little knowledge of how containers and control operate within Gambas you can create
some good user interfaces.

4.3: Checking our user interface for CRUD

Many application developers would already have leapt into the coding stage by now. But it is worth
standing back and checking the design of our application for functionality. One checking method
often used with database applications is CRUD. CRUD stands for CREATE, READ, UPDATE,
DELETE. It is a check list to apply to records or entities in database tables against operations
performed by users.

The CRUD check list is often set out as a matrix. Along one side are listed the tables or entities in
the database. Along the other side are listed the user roles for the database. Inside each cell you list
the CRUD actions that each user role can perform on each table or entity. The following diagram
demonstrates an imaginary CRUD matrix.

Getting Started with Gambas Version 2: A Tutorial Page 76 of 110
timothy.marshal-nichols @ntlworld.com

User Table 1 Table 2 Table 3
User 1 R,U R,U -
User 2 C.R,UD C.R,U R,U
Administrator C,R,UD C.R,U C.R,UD

From this matrix we can see that User 1 can only read and update tables 1 and 2. User 2 has
different levels of access to each table. The Administrator has full access to all tables apart from
table 2. Also for table 2 we have no way of deleting a record. These observations might be correct
for our imaginary application. But with a CRUD matrix like this we need to check the requirements
for our application again to find out.

CRUD is a check list. It is a check list that helps you spot any missing operations in your
application. This does not mean that every user should be able to perform all these operations. In
many cases there are operations you would not want performed by all users. For example in a
banking database you would not want all users to be able to delete details of finical transactions.
Rather with CRUD you are checking the functionality of your database application. You then have
to think about why some user should have or not have some particular functionality. It is the
thinking process that is important.

Often an additional operation is added to the CRUD check list. This is L for LIST. Can a user list
database records? I would also add S for SEARCH. Can a user search database records using some
search criteria?

-\(g- There are lots of descriptions of CRUD on the internet. Search for “CRUD+databases”.
| You could try: http://en.wikipedia.org/wiki/CRUD (acronym)

I find CRUD is a useful check list even when you are not dealing with a database. Any place in a
application where you are adding or removing data from controls at run time is worth putting
through the CRUD check list. This could be a grid, a text area, a combo box or many other controls.

CRUD is most often presented as a matrix. In our Notations application we only have one user and
one table. So the matrix looks a bit silly. Instead lets use the CRUD-LS check list to think about the
actions performed by our user on the database records.

Create: The user can create notes using the add button. This will add the current content of
the Note Title text box, Priority selection and Note text area to the database.

Read: Clicking on a note in the column view will place that record in the Note text box,
Priority RadioButtons and Note text area so it can be read.

Update: Clicking on the update button will save any changes to the current note to the
database. Also if any changes are made to a note and an action is attempted which could lose

http://en.wikipedia.org/wiki/CRUD_(acronym)

 >>

>>

endobj

597 0 obj

<< /Type /Annot

 /Subtype /Link

 /Border [0 0 0]

 /Rect [234.9 281.5 282.2 296]

 /Dest [409 0 R /XYZ 112 643.8 0]

>>

endobj

598 0 obj

<< /Type /Annot

 /Subtype /Link

 /Border [0 0 0]

 /Rect [295.3 198.5 410.2 213]

 /A << /Type /Action

 /S /URI

 /URI (http://tango-project.org/)

 >>

>>

endobj

599 0 obj

<< /Type /Annot

 /Subtype /Link

 /Border [0 0 0]

 /Rect [133.3 354.6 180.7 369.1]

 /Dest [520 0 R /XYZ 81.8 730.3 0]

>>

endobj

600 0 obj

<< /Type /Annot

 /Subtype /Link

 /Border [0 0 0]

 /Rect [166.1 239.7 277.5 255.4]

 /A << /Type /Action

 /S /URI

 /URI (http://www.sqlite.org/)

 >>

>>

endobj

601 0 obj

<< /Type /Annot

 /Subtype /Link

 /Border [0 0 0]

 /Rect [56.7 268.2 140.7 282.7]

 /Dest [300 0 R /XYZ 56.7 617.1 0]

>>

endobj

602 0 obj

<< /Type /Annot

 /Subtype /Link

 /Border [0 0 0]

 /Rect [56.7 331 140.7 345.5]

 /Dest [294 0 R /XYZ 56.7 580.6 0]

>>

endobj

603 0 obj

<< /Type /Annot

 /Subtype /Link

 /Border [0 0 0]

 /Rect [56.7 249 140.7 263.5]

 /Dest [282 0 R /XYZ 56.7 672.5 0]

>>

endobj

604 0 obj

<< /Type /Annot

 /Subtype /Link

 /Border [0 0 0]

 /Rect [160.5 546.6 214.5 562.3]

 /Dest [150 0 R /XYZ 56.7 184.1 0]

>>

endobj

605 0 obj

<< /Type /Annot

 /Subtype /Link

 /Border [0 0 0]

 /Rect [56.7 632 140.7 646.5]

 /Dest [276 0 R /XYZ 56.7 194 0]

>>

endobj

606 0 obj

<< /Type /Annot

 /Subtype /Link

 /Border [0 0 0]

 /Rect [325 251.1 348.7 265.6]

 /Dest [282 0 R /XYZ 56.7 672.5 0]

>>

endobj

607 0 obj

<< /Type /Annot

 /Subtype /Link

 /Border [0 0 0]

 /Rect [56.7 306.5 140.7 321]

 /Dest [273 0 R /XYZ 56.7 181.4 0]

>>

endobj

608 0 obj

<< /Type /Annot

 /Subtype /Link

 /Border [0 0 0]

 /Rect [399.7 712.1 470.3 726.6]

 /Dest [300 0 R /XYZ 56.7 617.1 0]

>>

endobj

609 0 obj

<< /Type /Annot

 /Subtype /Link

 /Border [0 0 0]

 /Rect [166.3 204.5 190 219]

 /Dest [282 0 R /XYZ 56.7 672.5 0]

>>

endobj

610 0 obj

<< /Type /Annot

 /Subtype /Link

 /Border [0 0 0]

 /Rect [279.6 218.9 307 233.4]

 /Dest [276 0 R /XYZ 56.7 194 0]

>>

endobj

611 0 obj

<< /Type /Annot

 /Subtype /Link

 /Border [0 0 0]

 /Rect [56.7 218.9 114.8 233.4]

 /Dest [261 0 R /XYZ 56.7 84.2 0]

>>

endobj

612 0 obj

<< /Type /Annot

 /Subtype /Link

 /Border [0 0 0]

 /Rect [56.7 365.2 164.8 378.4]

 /Dest [270 0 R /XYZ 56.7 685.7 0]

>>

endobj

613 0 obj

<< /Type /Annot

 /Subtype /Link

 /Border [0 0 0]

 /Rect [56.7 166 68.8 180.5]

 /Dest [276 0 R /XYZ 56.7 194 0]

>>

endobj

614 0 obj

<< /Type /Annot

 /Subtype /Link

 /Border [0 0 0]

 /Rect [505.1 180.4 538.6 194.9]

 /Dest [276 0 R /XYZ 56.7 194 0]

>>

endobj

615 0 obj

<< /Type /Annot

 /Subtype /Link

 /Border [0 0 0]

 /Rect [120.5 406.7 173 421.2]

 /Dest [264 0 R /XYZ 112 337.4 0]

>>

endobj

616 0 obj

<< /Type /Annot

 /Subtype /Link

 /Border [0 0 0]

 /Rect [56.7 560.8 140.7 575.3]

 /Dest [261 0 R /XYZ 56.7 84.2 0]

>>

endobj

617 0 obj

<< /Type /Annot

 /Subtype /Link

 /Border [0 0 0]

 /Rect [224.2 498 343.6 512.5]

 /A << /Type /Action

 /S /URI

 /URI (http://forum.stormweb.no/)

 >>

>>

endobj

618 0 obj

<< /Type /Annot

 /Subtype /Link

 /Border [0 0 0]

 /Rect [363.2 595.4 501.6 611.1]

 /A << /Type /Action

 /S /URI

 /URI (http://www.gnu.org/licenses/)

 >>

>>

endobj

619 0 obj

<< /Type /Annot

 /Subtype /Link

 /Border [0 0 0]

 /Rect [268.7 107 526.9 121.5]

 /A << /Type /Action

 /S /URI

 /URI (http://www.thefreecountry.com/compilers/basic.shtml)

 >>

>>

endobj

620 0 obj

<< /Type /Annot

 /Subtype /Link

 /Border [0 0 0]

 /Rect [268.7 126.9 504.9 141.4]

 /A << /Type /Action

 /S /URI

 /URI (http://www.mono-project.com/Language_BASIC)

 >>

>>

endobj

621 0 obj

<< /Type /Annot

 /Subtype /Link

 /Border [0 0 0]

 /Rect [268.7 146.9 407.1 161.4]

 /A << /Type /Action

 /S /URI

 /URI (http://www.gnu.org/licenses/)

 >>

>>

endobj

622 0 obj

<< /Type /Annot

 /Subtype /Link

 /Border [0 0 0]

 /Rect [268.7 166.8 383.6 181.3]

 /A << /Type /Action

 /S /URI

 /URI (http://tango-project.org/)

 >>

>>

endobj

623 0 obj

<< /Type /Annot

 /Subtype /Link

 /Border [0 0 0]

 /Rect [268.7 186.8 397 201.3]

 /A << /Type /Action

 /S /URI

 /URI (http://www.postgresql.org/)

 >>

>>

endobj

624 0 obj

<< /Type /Annot

 /Subtype /Link

 /Border [0 0 0]

 /Rect [268.7 206.7 376.4 221.2]

 /A << /Type /Action

 /S /URI

 /URI (http://www.mysql.org/)

 >>

>>

endobj

625 0 obj

<< /Type /Annot

 /Subtype /Link

 /Border [0 0 0]

 /Rect [268.7 226.7 373.8 241.2]

 /A << /Type /Action

 /S /URI

 /URI (http://www.sqlite.org/)

 >>

>>

endobj

626 0 obj

<< /Type /Annot

 /Subtype /Link

 /Border [0 0 0]

 /Rect [268.7 274.2 400.6 288.7]

 /A << /Type /Action

 /S /URI

 /URI (http://gambas.gnulinex.org/)

 >>

>>

endobj

627 0 obj

<< /Type /Annot

 /Subtype /Link

 /Border [0 0 0]

 /Rect [268.7 294.2 376.2 308.7]

 /A << /Type /Action

 /S /URI

 /URI (http://gambas-club.de/)

 >>

>>

endobj

628 0 obj

<< /Type /Annot

 /Subtype /Link

 /Border [0 0 0]

 /Rect [268.7 314.1 394.5 328.6]

 /A << /Type /Action

 /S /URI

 /URI (http://forum.stormweb.no/)

 >>

>>

endobj

629 0 obj

<< /Type /Annot

 /Subtype /Link

 /Border [0 0 0]

 /Rect [268.7 334.1 395.8 348.6]

 /A << /Type /Action

 /S /URI

 /URI (http://www.linuxbasic.net/)

 >>

>>

endobj

630 0 obj

<< /Type /Annot

 /Subtype /Link

 /Border [0 0 0]

 /Rect [268.7 387.6 375.1 402.1]

 /A << /Type /Action

 /S /URI

 /URI (http://www.gambas.it/)

 >>

>>

endobj

631 0 obj

<< /Type /Annot

 /Subtype /Link

 /Border [0 0 0]

 /Rect [268.7 422 520.4 436.5]

 /A << /Type /Action

 /S /URI

 /URI (https://lists.sourceforge.net/lists/listinfo/gambas-user)

 >>

>>

endobj

632 0 obj

<< /Type /Annot

 /Subtype /Link

 /Border [0 0 0]

 /Rect [268.7 442 448 456.5]

 /A << /Type /Action

 /S /URI

 /URI (http://de.wikibooks.org/wiki/Gambas)

 >>

>>

endobj

633 0 obj

<< /Type /Annot

 /Subtype /Link

 /Border [0 0 0]

 /Rect [268.7 461.9 448 476.4]

 /A << /Type /Action

 /S /URI

 /URI (http://en.wikibooks.org/wiki/Gambas)

 >>

>>

endobj

634 0 obj

<< /Type /Annot

 /Subtype /Link

 /Border [0 0 0]

 /Rect [268.7 481.9 401.5 496.4]

 /A << /Type /Action

 /S /URI

 /URI (http://www.gambasdoc.org/)

 >>

>>

endobj

635 0 obj

<< /Type /Annot

 /Subtype /Link

 /Border [0 0 0]

 /Rect [268.7 501.8 485.3 516.3]

 /A << /Type /Action

 /S /URI

 /URI (http://gambas.sourceforge.net/download.html)

 >>

>>

endobj

636 0 obj

<< /Type /Annot

 /Subtype /Link

 /Border [0 0 0]

 /Rect [268.7 521.8 413.4 536.3]

 /A << /Type /Action

 /S /URI

 /URI (http://gambas.sourceforge.net/)

 >>

>>

endobj

637 0 obj

<< /Type /Annot

 /Subtype /Link

 /Border [0 0 0]

 /Rect [390.3 88.3 439.3 102.8]

 /Dest [23 0 R /XYZ 86.8 730.3 0]

>>

endobj

638 0 obj

<< /Type /Annot

 /Subtype /Link

 /Border [0 0 0]

 /Rect [92.7 556.8 142.2 571.7]

 /Dest [322 0 R /XYZ 81.8 730.3 0]

>>

endobj

639 0 obj

<< /Type /Annot

 /Subtype /Link

 /Border [0 0 0]

 /Rect [92.7 592.1 151.5 607]

 /Dest [179 0 R /XYZ 81.8 730.3 0]

>>

endobj

640 0 obj

<< /Type /Annot

 /Subtype /Link

 /Border [0 0 0]

 /Rect [92.7 641.9 146.7 656.8]

 /Dest [33 0 R /XYZ 81.8 730.3 0]

>>

endobj

641 0 obj

<< /Type /Annot

 /Subtype /Link

 /Border [0 0 0]

 /Rect [56.7 539.9 314.9 554.4]

 /A << /Type /Action

 /S /URI

 /URI (http://www.thefreecountry.com/compilers/basic.shtml)

 >>

>>

endobj

736 0 obj

<< /Type /Catalog

 /Pages 642 0 R

 /Outlines 711 0 R

>>

endobj

737 0 obj

<< /Title <FEFF00470065007400740069006E00670020005300740061007200740065006400200077006900740068002000470061006D006200610073002000560065007200730069006F006E00200032003A002000410020005400750074006F007200690061006C>

/Author <FEFF00540069006D006F0074006800790020004D00610072007300680061006C002D004E006900630068006F006C0073>

/Subject <FEFF004C006500610072006E0069006E0067002000560069007300750061006C002000420061007300690063002000770069007400680020004C0069006E0075007800200061006E0064002000470061006D006200610073>

/Keywords <FEFF00470061006D006200610073002C002000560069007300750061006C002000420061007300690063002C002000440061007400610062006100730065002C00200049006D0061006700650073002C0020005400750074006F007200690061006C>

/Creator <FEFF005700720069007400650072>

/Producer <FEFF004F00700065006E004F00660066006900630065002E006F0072006700200032002E0030002D007000720065>

/CreationDate (D:20060528181658+01'00'

Getting Started with Gambas Version 2: A Tutorial Page 77 of 110
timothy.marshal-nichols @ntlworld.com

the changes a warning message is displayed. You can then choose to continue and lose the
changes or cancel the action.

+ Delete: By selecting a record in the column view and then clicking the delete button the
currently selected record will be deleted.

- List: A list of database records is shown in the column view. Clicking on the Refresh button
will load all note titles into the column view.

-+ Search: In the tool box we have a text box where you can enter a search string. Clicking on
the search button next to this text box will list all database records that contain this text in a
Note Title or Note. If you want to get the complete list of notes back again then you would
click the refresh button.

4.4: Adding the code

This is the section where we get our application to do it's real work. The code for this applications is
split into two sections. The first is the form window that handles the user interface. We have just
created the controls we need for this and the resizing code. Later we shall add code to handle
operations created when the user edits notes. The second code section is going to be the interface to
the database. Creating this module is what we are going to do next.

Our code to communicate with the database is going to be placed in a Gambas module. Having this
database code in one module makes it easier to separate the database specific code from the user
interface code. Right click in the Gambas project manager and select New from the pop up menu.
Then select Module... from the sub menu. In the dialog call the module ModuleDatabase and
leave the check boxes in the default state of unchecked. Click on the OK button to create the
module.

We first need two variables that are used by a number of procedures. The first is a database
connection object. This is only used inside this procedure so it is made PRIVATE. The second
variable is a Result object. This holds our Notes data as well as being used to update and delete
notes. As it is also used by the FormNotations class it is made PUBLIC.

ModuleDatabase.module

PRIVATE databaseConnection AS NEW Connection
PUBLIC Notes AS Result

Continued Below

Getting Started with Gambas Version 2: A Tutorial
timothy.marshal-nichols @ntlworld.com

Page 78 of 110

Our first procedure opens a database connection. It performs the following actions:
« Open a connection (to the database server only).
+ Check if the server connection has a database with the required database name.
- If there is no database with the required database name then create a new database.
-+ Close the server connection.
« Open a connection to the database.
« Check if the database has a Notes table.

If there is no Notes table in the database then add this table. Also add a default welcome
note with some information about how to use this application.

First we set up the information for the connection to the database server. We use the information
passed to the procedure for database type, host name, user name and password. Notice we set the
database name property to a blank string. This is because we want to open a connection to the server
first and check that the database exists. Having set up the connection we try to open it. This is one
of the key points the procedure could produce and error. We then test if the database name we
require already exists. If it does not exist then we add this database to the server.

For a SQLite database I found you needed to give the system a short delay to write the newly
created database to disk before attempting to open it. This is not required for client/server types of
databases like MySQL or PostgreSQL. As it does not do any harm we include it for all types of
databases.

If we reach this point then we know these exists a database with the required name. So we set the
database name on the connection. (We also set the host name again, this is not strictly necessary, but
I think it makes the code a bit more readable.) Then we open the database connection. This is the
second key point where we could produce and error.

We then test if the notes table exists in the database. If the table does not exist then we need to add
it. We do this by creating a new table object using our database connection. We then add the
required fields to this table and state which field is the primary key for the table. In order to write
the new table into the database we call the update method on the table object.

The following table shows some information about the fields for our Notes table. The information in
the first three columns is required by Gambas. The final columns show what the Gambas data types
map to for some database types.

Field Name Gambas Type Comment SQLite 2 Type MySQL Type
CreateDate gb.Date Primary Key DATETIME datetime
LastModified gb.Date DATETIME datetime

Getting Started with Gambas Version 2: A Tutorial Page 79 of 110
timothy.marshal-nichols @ntlworld.com

Field Name Gambas Type Comment SQLite 2 Type MySQL Type
Title gb.String Length O for a TEXT text
unlimited string
Note gb.String Length O for a TEXT text
unlimited string
Priority gb.Integer INT4 int(11)

We are going to write a procedure to add records to our database. So we may as well use this to
create a first record in our database. The content of the note is taken from the welcome text file we
created above. As this is a relative file path it would be included in the application when it is
compiled.

“ Gambas version 1 does not understand the Dconv function. So lines that include it:

Dconv (Error.Text)
Gambas

should just omit the function call:
Error.Text

This also applies to most of the procedures in ModuleDatabase that follow.

ModuleDatabase.module

PUBLIC SUB OpenDatabase (DBType AS String, DBHost AS String, DBName
“* AS String, UserName AS String, UserPassword AS String)

DIM notesTable AS Table

DIM errorMessageHeader AS String

' Open a connection (to the database server only)

databaseConnection.Type = Lower (DBType)

databaseConnection.Host = DBHost

databaseConnection.Name = ""

databaseConnection.Login = UserName

databaseConnection.Password = UserPassword

databaseConnection.Port = ""

' Open the connection

TRY databaseConnection.Open ()

IF ERROR THEN

errorMessageHeader = "Could not open database connection " &

“# DBHost

Error.Raise (Error.Text)

Getting Started with Gambas Version 2: A Tutorial Page 80 of 110
timothy.marshal-nichols @ntlworld.com

END IF

' Check if the server connection has a database with the

' required database name.

IF NOT databaseConnection.Databases.Exist (DBName) THEN
PRINT "Database not found. Creating new database"
' Create new database
databaseConnection.Databases.Add (DBName)
' I found I needed this with a SQLite database
' (but not with a MySQL database)
WAIT 0.5

END IF

' Close the server connection

databaseConnection.Close ()

' Open a connection to the database

databaseConnection.Host = DBHost

databaseConnection.Name = DBName

TRY databaseConnection.Open ()

IF ERROR THEN
errorMessageHeader = "Could not open database " & DBName &

“+ " on " & DBHost

Error.Raise (Error.Text)

END IF

' Check if the database has a Notes table

IF NOT databaseConnection.Tables.Exist ("Notes") THEN
PRINT "Database tables not found. Creating new notes table"
' Add a Notes table to the database
notesTable = databaseConnection.Tables.Add ("Notes")
notesTable.Fields.Add ("CreateDate", gb.Date)
notesTable.Fields.Add ("LastModified", gb.Date)
notesTable.Fields.Add("Title", gb.String, 0)
notesTable.Fields.Add ("Note", gb.String, 0)
notesTable.Fields.Add("Priority", gb.Integer,, 0)
notesTable.PrimaryKey = ["CreateDate"]
notesTable.Update ()
' Add a default welcome record

AddData ("Welcome", File.Load("Welcome.txt"), 0)

Getting Started with Gambas Version 2: A Tutorial Page 81 of 110
timothy.marshal-nichols @ntlworld.com

END IF
CATCH
IF errorMessageHeader = "" THEN
errorMessageHeader = "Database connection error: " & DBName &

“*+ " on " & DBHost

END IF

Error.Raise ("" & errorMessageHeader & "<hr>Error:
" &
“* DConv (Error.Text))

END

Continued Below

As you can see most of the above procedure deals with checking we have a valid database and
tables. The code to create the connection is relatively small. If you knew you had a valid database
then you could cut this procedure down to the following code:

databaseConnection.Type = Lower (DBType)
databaseConnection.Host = DBHost
databaseConnection.Name = DBName
databaseConnection.Login = UserName
databaseConnection.Password = UserPassword
databaseConnection.Port = ""
databaseConnection.Open ()

Also you would need some error checking when you opened the database connection.

When communicating with a database it is important to handle any possible errors. But where is the
best place in your application for such code? We want this module to be general and flexible. So
here we just format the error message. The Gambas message box can use HTML formatting so we
add some information and HTML formatting and pass on the error using the Error .Raise
method. This means that in the code in the Form class we need to catch these errors and display the
error message. There are three possible errors we could have in this procedure:

- When we open a connection (to the database server only).
- When we open a database connection.

- Any other type of error. For example if we do not have permissions to create the database or
table.

This module will give a slightly different error message in each case. In the procedures below we
adopt a similar approach to handling errors.

Getting Started with Gambas Version 2: A Tutorial Page 82 of 110
timothy.marshal-nichols @ntlworld.com

The following procedure will close the connection to the database. This procedure is called when we
close our application. We place a TRY before the close method as we do not want any errors
displayed to the user if the database is already closed. If there is a error closing the database we
PRINT as message. This is so you can see errors when developing the application. However the
user should not see this message.

ModuleDatabase.module - Continued
PUBLIC SUB CloseDatabase ()
TRY databaseConnection.Close ()
IF ERROR THEN PRINT "Error closing database"

END

Continued Below

This next function adds a record to our Notes database table. The values passed to the function are
the Note Title, the Note itself and its Priority. For the creation and last modified time we use the
current time.

Using the Create method on the connection object we create a Result object that is designed to
add records to a database table. We pass the name of the table to the Create method. This returns
a Result object that has one empty record in it. The fields in this Result object are the fields in our
table. We then fill the fields with the required values for the new record. Then we call the Update
method which will add our new record to the database table.

If there are any errors in creating the database record the we format the error message and pass it up
to the calling procedure. The function returns a the date and time that the note was created. This
date and time is the value of the key field of the newly created note. It allows the calling procedure
to find the new note using this key.

ModuleDatabase.module - Continued

' Create a record
PUBLIC FUNCTION AddData(Title AS String, Note AS String, Priority
‘“* AS Integer) AS String

DIM newNote AS Result

DIM createTime AS Date

createTime = Now

Getting Started with Gambas Version 2: A Tutorial Page 83 of 110
timothy.marshal-nichols @ntlworld.com

newNote = databaseConnection.Create ("Notes")

newNote ["CreateDate"] = createTime

newNote["LastModified"] = createTime

newNote ["Title"] = Conv(Title, Desktop.Charset,
‘* databaseConnection.Charset)

newNote ["Note"] = Conv (Note, Desktop.Charset,
* databaseConnection.Charset)

newNote ["Priority"] = Priority

newNote.Update ()

RETURN FormatDate (createTime)
CATCH

Error.Raise ("Add database record error<hr>Error:
" &
“* DConv (Error.Text))

END

Continued Below

A Result object is a structure that can store the result of a database query. There are three kinds of
Result objects — Create, Read and Write. There are four method we can used to create a Result
object. The functionality of the returned Result object depends on the method used to create it.
These methods are summarised in the following table. We have already used the Create method to
add a database record - see above. But we also present it here to be complete.

Method Result Type Comment
Create (Table AS String) |Create Creates a Result object with one record that
AS Result can be used for adding records to a table.
Find(Table AS String [, |ReadOnly This method returns data from a single table.
Request AS String, Table is the (case insensitive) name of the
Arguments...]) AS Result database table. Request is a optional SQL

type WHERE clause used to filter the table
rows. Arguments is a optional list of
parameters to be substituted in the Request
clause. The returned Result object can not be
updated.

Getting Started with Gambas Version 2: A Tutorial Page 84 of 110
timothy.marshal-nichols @ntlworld.com

Method Result Type Comment
Edit (Table AS String [, |Read/Write |This method returns data from a single table.
Request AS String, Table is the (case insensitive) name of the
Arguments...]) AS Result database table. Request is a optional SQL

type WHERE clause used to filter the table
rows. Arguments is a optional list of
parameters to be substituted in the Request
clause. The returned Result object is
updateable.

In the returned Result object records can be
updated by moving to a row changing the
field values and calling the Update method.
Records can be deleted by moving to a row
and calling the Delete method. The record
is then deleted from the underlying database
table.

You can not add record to this kind of Result
object. See the Create method above.

Exec (Request AS String Read Only Here Request is any SQL query.

[, Arguments...]) AS Arguments is a optional list of parameters
Result that are used in the query. The returned Result
object can not be updated.

This method can be us send any SQL query to
the database. See above

We want to be able to edit database records so we use the Edit method to return a Result object.
Using the name of our notes table as a parameter to select all the database notes records. If there are
any errors in selecting the database records then we format the error message and pass it up to the
calling procedure.

ModuleDatabase.module - Continued

' Read a table
PUBLIC SUB SelectData()
Notes = databaseConnection.Edit ("Notes")
CATCH
Error.Raise ("Select database records error<hr>Error:
"
“* ¢ DConv (Error.Text))

END

Continued Below

Getting Started with Gambas Version 2: A Tutorial Page 85 of 110
timothy.marshal-nichols @ntlworld.com

We opened the Notes Result object with the Edit method on the Connection object. We passed
the Edit method the name our Notes database table. This means we have a Result object that can
be edited. Here we want to update a record. The first values passed to the function is the index in the
Result object of the record we want to update. The first thing this procedure does is to move to this
record.

The other values passed to the function are the new values for the Note Title, the Note itself and its
Priority. These values are copied to the Result object. We also set the LastModified field to the
current date and time. We do not change the CreateDate as this is the key field. When we have
set the required values for the tables fields the Update method is then called to update the
database table. If there are any errors in updating the database record then we format the error
message and pass it up to the calling procedure.

ModuleDatabase.module - Continued

' Update a record
PUBLIC SUB UpdateData (Row AS Integer, Title AS String, Note AS
'+ String, Priority AS Integer)
Notes.MoveTo (Row)
Notes["LastModified"] = Now
Notes["Title"] = Conv(Title, Desktop.Charset,
“# databaseConnection.Charset)
Notes["Note"] = Conv (Note, Desktop.Charset,
‘* databaseConnection.Charset)
Notes["Priority"] = Priority
Notes.Update ()
CATCH
Error.Raise ("Update database record error<hr>Error:
"
“* & Dconv(Error.Text))

END

Continued Below

In order to delete a notes record all we need is the index to the notes record row in the Result object.
This is passed as a parameter to the delete function. We make sure we are on this row and call the
Result objects Delete method. This deletes the record from the database table. If there are any
errors in deleting the database record then we format the error message and pass it up to the calling

Getting Started with Gambas Version 2: A Tutorial Page 86 of 110
timothy.marshal-nichols @ntlworld.com

procedure.

ModuleDatabase.module - Continued

' Delete a record
PUBLIC SUB DeleteData (Row AS Integer)
Notes.MoveTo (Row)
Notes.Delete ()
CATCH
Error.Raise ("Delete database record error<hr>Error:
"
“* & DConv (Error.Text))

END

Continued Below

In the database module we provide a method that converts a date object to a formatted date string.
We do this so we can have a common format for the date/time in our application. We always use this
method call to format the date. Then if we ever need to change the date format we only have to do
this in one place.

ModuleDatabase.module - Continued

PUBLIC FUNCTION FormatDate(d AS Date) AS String
RETURN Format (d, "dd mmm yyyy hh:nn:ss")
END

So far we have created a user interface and we have just created a interface to the database. Now we
need to bring these two sections together. We need to add the code so that when the user edits a note
in the user interface it connects to and updates the database.

The first procedure handles the Form open event. This is run the first time the form is loaded and so
is a good place for our set up code. We set the title to the form window to include the application
name and version. We have a ColumnView on the left of the form which will show a list of the
available notes in the database. Here we configure this ColumnView and set the number of columns
and the text for the column headings.

Getting Started with Gambas Version 2: A Tutorial Page 87 of 110
timothy.marshal-nichols @ntlworld.com

We then call some functions to to display information from the database. First we call the function
we created above to create a database connection. We then call functions to refresh the notes list in
the ColumnView and to display the currently selected note. Our database procedures can throw
errors so we need to catch these and display the error message.

When calling a procedures or function in a module we have to use the format:
ModuleName.ProcedureName (.. .)

or
object = ModuleName.FunctionName(...)

without prefixing the procedures or function with the module name is will not be visible within the
calling object. Also only PUBLIC procedures or function in a module can be accessed.

“' Some older versions of Gambas use System.Home to return the users Home
directory. So the line that calls our open database method should be changed to the
Gambas following:

ModuleDatabase.OpenDatabase ("sglite", System.Home,

w ")

* Application.Name, "",

FormNotations.class

PRIVATE changesMade AS Boolean

PUBLIC SUB Form_Open ()

ME.Title = Application.Name & " Version: " &
“* Application.Version

' ColumnView properties

ColumnViewNotes.Columns.Count = 3
ColumnViewNotes.Columns[0] .Text = "P"
ColumnViewNotes.Columns [0] .Width = 20
ColumnViewNotes.Columns[1l] .Text = " Title"
ColumnViewNotes.Columns[1l] .Width = 150

ColumnViewNotes.Columns[2] .Text = " Last Modified"
ColumnViewNotes.Columns[2] .Width = 150

' Use this connection for a SQLite database
ModuleDatabase.OpenDatabase ("sglite", User.Home,

nw ")

“*+ Application.Name, "",

Getting Started with Gambas Version 2: A Tutorial Page 88 of 110
timothy.marshal-nichols @ntlworld.com

RefreshNotes ()
IF ColumnViewNotes.Current <> NULL THEN
DisplayNote (ColumnViewNotes.Current.Key)
END IF
CATCH
Message.Warning (ERROR.Text)
END

Continued Below

When the form is about to close we need to check if the user has made any changes to the current
note that have not been saved yet. As we are going to have to perform this test in a number of places
we have written a small function for this. It will show a message box warning of any unsaved
changes. This function returns TRUE if the user wants to cancel the selected action. To cancel the
close event on the form we use the STOP EVENT statement. STOP EVENT only cancels the event
and prevents any other events handlers for the event being called. It does not exit the current event
handler. So we need the RETURN statement to do this.

If there were no changes to the database or the user clicked the Continue button when prompted
about unsaved changes then we close the database connection and quit the application.

FormNotations.class - Continued

PUBLIC SUB Form_Close ()
IF TestChangesMade () THEN
STOP EVENT
RETURN
END IF
ModuleDatabase.CloseDatabase ()
END

Continued Below

This is our form resizing code again. We have repeated it here to show its position in the code
listing. (If you are using Gambas version 1 your code may look different. See above.)

FormNotations.class - Continued

Getting Started with Gambas Version 2: A Tutorial Page 89 of 110
timothy.marshal-nichols @ntlworld.com

PUBLIC SUB Form_Resize ()

HPanelTools.Width = ME.ClientWidth

HSplitWindow.Move (0, HPanelTools.Height, ME.ClientWidth,
‘“# ME.ClientHeight - HPanelTools.Height)
END

PUBLIC SUB HSplitWindow_Resize ()
TextBoxTitle.Width = PanelNote.ClientWidth
TextAreaNote.Resize (PanelNote.ClientWidth,

'+ PanelNote.ClientHeight - TextAreaNote.Top)

END

Continued Below

The next group of procedures handle events when the user clicks on a button in our tool bar. This
procedure handles the click event when the user selects the new note button.

First we check which of the note priority radio buttons is selected and set a integer based upon the
selection. The priority value O is for low priority, the value 1 is for medium priority and the value 2
is for high priority. We then send this value along with the title text and note text to the add note
function we created earlier.

Adding the note to the database is very easy. The main problem is finding it again! When the user
adds a new note we want the new note to be highlighted in the ColumnView and to be the currently
selected note. Our AddData function returns the key of the newly created note. We then call our
refresh note method to update the ColumnView. This should include the new note. We then search
the text in the ColumnView Last Modified column for the key and make this the current note.

FormNotations.class - Continued

PUBLIC SUB ToolButtonNew_ Click ()
DIM key AS String
DIM priority AS Integer
IF RadioButtonHigh.Value THEN
priority = 2
ELSE IF RadioButtonMedium.Value THEN

Getting Started with Gambas Version 2: A Tutorial Page 90 of 110
timothy.marshal-nichols @ntlworld.com

priority = 1
ELSE
priority = 0
END IF
key = ModuleDatabase.AddData (TextBoxTitle.Text,
'+ TextAreaNote.Text, priority)
RefreshNotes ()
' Find the note we just created
IF ColumnViewNotes.MoveFirst () THEN RETURN
REPEAT
IF key = ColumnViewNotes.Item[2] THEN
ColumnViewNotes [ColumnViewNotes.Item.Key] .Selected = TRUE
BREAK
END IF
UNTIL ColumnViewNotes.MoveNext ()
' Make the note we created the current note
IF ColumnViewNotes.Current <> NULL THEN
DisplayNote (ColumnViewNotes.Current.Key)
END IF
CATCH
Message.Warning (ERROR.Text)
END

Continued Below

This procedure is to handle when the user clicks on the Delete Note tool bar button. We first check
that a note has been selected in the ColumnView to delete. If a note is selected we display a warning
message that allows the user to cancel the action. If they select Yes to this prompt we call the delete
method we created earlier. We then call our refresh note method to update the ColumnView and
then call our display method to show the default note.

FormNotations.class — Continued
PUBLIC SUB ToolButtonDelete Click ()

IF ColumnViewNotes.Current <> NULL THEN

IF Message.Warning("Are you sure you want to delete the

Getting Started with Gambas Version 2: A Tutorial Page 91 of 110
timothy.marshal-nichols @ntlworld.com

“*» note?\n\n" & ModuleDatabase.Notes["Title"], "Yes", "Cancel") =1
“+ THEN
ModuleDatabase.DeleteData (ColumnViewNotes.Current .Key)
RefreshNotes ()
IF ColumnViewNotes.Current <> NULL THEN
DisplayNote (ColumnViewNotes.Current.Key)
END IF
END IF
ELSE
Message.Info ("No note has been selected to delete")
END IF
CATCH
Message.Warning (ERROR.Text)
END

Continued Below

We now handle the event when the Refresh tool bar button is clicked. We want a refresh button
because, as we shall see in the next procedure, the user can select just the notes that contain a
specific search text. This will refresh the ColumnView and display all notes.

Before we refresh the list we check that there are no unsaved changed to the current note using the
function we are going to create below. We then use code similar to that in the form open event to
display the ColumnView list and display the default note.

FormNotations.class - Continued

PUBLIC SUB ToolButtonRefresh Click ()
IF TestChangesMade () THEN RETURN
RefreshNotes ()
IF ColumnViewNotes.Current <> NULL THEN

DisplayNote (ColumnViewNotes.Current.Key)

END IF

CATCH
Message.Warning (ERROR.Text)

END

Getting Started with Gambas Version 2: A Tutorial Page 92 of 110
timothy.marshal-nichols @ntlworld.com

Continued Below

This procedure handles the event of the user clicking on the Search button. The user will have
entered some text in the Text BoxSearch next to the search button. The objective of this
procedure is then to search through all note titles and the note contents for the search text. And to
place all the notes that contain the search text in the ColumnView.

We start this procedure by calling our function to test if the current note has changes that have not
been saved. We are going to create this function below. Next we test if the user has entered some
text to search for in the TextBoxSearch control. If there is no text there we display a message to
the user.

To perform the search we call the RefreshNotes procedure sending it the search text as a parameter.
We then test if this procedure found any notes with the required search text. If some notes have been
found then the ColumnView's current value will be set. If it is set then we call our procedure to
display the current note. If no notes have been found then we clear the controls on the right half of
the form window that display the current note and also display a message to the user informing them
that the search text has not been found.

FormNotations.class - Continued

PUBLIC SUB ToolButtonSearch_Click()
IF TestChangesMade () THEN RETURN
IF TextBoxSearch.Text THEN
RefreshNotes (TextBoxSearch.Text)
IF ColumnViewNotes.Current <> NULL THEN
DisplayNote (ColumnViewNotes.Current.Key)
ELSE
TextBoxTitle.Text = ""
RadioButtonMedium.Value = FALSE
RadioButtonHigh.Value = FALSE
RadioButtonLow.Value = FALSE
TextAreaNote.Text = ""
changesMade = FALSE
Message.Info("The search text \"" & TextBoxSearch.Text &
“# "\" has not been found in any note")

END IF

Getting Started with Gambas Version 2: A Tutorial Page 93 of 110
timothy.marshal-nichols @ntlworld.com

ELSE
Message.Info ("There is no search text to find in notes")
END IF
CATCH
Message.Warning (ERROR.Text)
END

Continued Below

This procedure handles the event when the button to update the currently selected note is clicked.
We first test if there is a currently selected note and display a message if no note is selected.

Next we find the value to send to the database for the priority from the priority radio buttons. We
then save the index key to the current note so we can find it again after we refresh the notes list. We
then call our database procedure to update a note. This procedure requires the index key for the note
to update along with the information for the note.

We call our procedure to refresh the notes list in the ColumnView with the new data. This procedure
will set the current note to a default note. But here is your be more useful to the user to display the
note they have just updated. So we use the index key we have saved to set the current item in the
ColumnView. We then call the display note procedure passing it the index key to display the
updated note content.

FormNotations.class - Continued

PUBLIC SUB ToolButtonUpdate_ Click ()

DIM priority AS Integer

DIM noteNumber AS Integer

IF ColumnViewNotes.Current = NULL THEN
Message.Info ("No note has been selected to update")
RETURN

END IF

' Get value from radio buttons for priority

IF RadioButtonHigh.Value THEN
priority = 2

ELSE IF RadioButtonMedium.Value THEN

priority = 1

Getting Started with Gambas Version 2: A Tutorial Page 94 of 110
timothy.marshal-nichols @ntlworld.com

ELSE
priority = O
END IF
noteNumber = ColumnViewNotes.Current.Key

' Update changed record
ModuleDatabase.UpdateData (noteNumber, TextBoxTitle.Text,
* TextAreaNote.Text, priority)
' Refresh the notes 1list
RefreshNotes ()
' Display this note
ColumnViewNotes [noteNumber] .Selected = TRUE
DisplayNote (noteNumber)
CATCH
Message.Warning (ERROR.Text)
END

Continued Below

The help button is very simple. We load the HTML help file we created earlier into a message box
to display the help.

FormNotations.class - Continued
PUBLIC SUB ToolButtonHelp_Click ()
Message.Info (File.Load ("help.htm"))

END

Continued Below

This event handler is for when the user clicks on a row in the ColumnView. We then want the note
the user clicked on to be displayed. We know the user must have clicked on a valid note as click
event is only fired if the ColumnView has some items to select. We check if there have been changes
made to the previous note that have not been saved. We are going to create this function below. If
the user select to cancel the action we highlight the previous note in the ColumnView. If there are
no unsaved changes or the user has selected to continue then we call our display notes method to
show the selected note. The key of the ColumnView view item we have designed to match the index
for the note.

Getting Started with Gambas Version 2: A Tutorial Page 95 of 110
timothy.marshal-nichols @ntlworld.com

FormNotations.class - Continued

PUBLIC SUB ColumnViewNotes_Click ()
' Check if changes have been made to the previous note
IF TestChangesMade () THEN
' User selected to cancel change of note
' Display the previous note
ColumnViewNotes [ModuleDatabase.Notes.Index] .Selected = TRUE
ELSE
' Display the new note
DisplayNote (ColumnViewNotes.Current.Key)
END IF
END

Continued Below

This group of event handlers are used to detect if the user has made any changes to the current note.
If the text in a TextBox or TextArea is modified the Change event is called. Also the Click event on
the RadioButton is used to detect if a RadioButton has been selected. Note that the click event on
the RadioButton is also called if the user changed the current RadioButton using the keyboard.

FormNotations.class - Continued

PUBLIC SUB TextBoxTitle_Change ()
changesMade = TRUE
END

PUBLIC SUB TextAreaNote_Change ()
changesMade = TRUE
END

PUBLIC SUB RadioButtonPriority Click ()
changesMade = TRUE
END

Getting Started with Gambas Version 2: A Tutorial Page 96 of 110
timothy.marshal-nichols @ntlworld.com

Continued Below

We now come to the procedures we have in the FormNotations class. We have called all of these
procedures in the code above. This first procedure we have called many times above. It is used
refresh the ColumnView with the current notes from the database.

My first intention was to write separate procedures for refreshing the ColumnView notes list and for
searching notes for some search text. In some ways this is the more obvious design choice. But if we
had used two procedures most of the code in each procedure would have been the same. So it seems
better to use a OPTIONAL parameter to the RefreshNotes procedure as the search text. If this
parameter is set then filter out the notes that do not contain this text.

We call our database procedure to select all the notes in the database. We want the default note to be
the first note we find with the highest priority. We use the £irstItem variable to keep track of the
priority of the note we have selected. So we need to initialise firstItem to a value lower then any
possible priority value in the database. We then convert the SearchText variable to lower case so
we can perform a case insensitive search for the search text. Next we clear the ColumnView of any
items that it currently may contain.

Now we come to the main loop of this procedure. Here we loop through all the record that have
been returned from the database. We decide if we want to test for the search text by checking if the
variable SearchText has a value. If SearchText has a value then we check if the search text
can be found in the notes Tit 1e field or in the notes Note field. If it cannot be found we use the
CONTINUE statement to skip processing the current record.

We add each item to the ColumnView and select the image for the item based upon the priority
field. This places the image in the first column of the ColumnView. We use the text values “H”,
“M” and “” (as low) for the priority values so the items can be sorted by priority. (If we used “L” for
the low priority items the list would have the low priority items between the high and medium
priority items. This would not look very good.)

One important point is using the index from the Result object as the key to the ColumnView items.
This enables us to easily find a record in the Result object when we need to update or delete a notes
record in the database.

We the add the title of the note to the second column of the ColumnView. Then we add the notes
last modified date and time to the third column. Here we format the data and time using the function
in our database module. The final check in the loop is to make the default selected item the first
item we find with the highest priority.

Getting Started with Gambas Version 2: A Tutorial Page 97 of 110
timothy.marshal-nichols @ntlworld.com

FormNotations.class - Continued

PRIVATE SUB RefreshNotes (OPTIONAL SearchText AS String)
DIM firstItem AS Integer
ModuleDatabase.SelectData ()
firstItem = -1
SearchText = Lower (SearchText)
ColumnViewNotes.Clear
FOR EACH ModuleDatabase.Notes
IF SearchText THEN
IF NOT ((InStr (Lower (ModuleDatabase.Notes["Title"]),
“* SearchText) > 0) OR
(InStr (Lower (ModuleDatabase.Notes["Note"]), SearchText) >
“+ 0)) THEN
' If the search text is not found then go on to the next
“* record
CONTINUE
END IF
END IF
IF CInt (ModuleDatabase.Notes["Priority"]) = 1 THEN
ColumnViewNotes.Add (ModuleDatabase.Notes.Index, "M",
‘“# Picture["Images/dialog-information.png"])
ELSE IF CInt (ModuleDatabase.Notes["Priority"]) > 1 THEN
ColumnViewNotes.Add (ModuleDatabase.Notes.Index, "H",
“# Picture["Images/media-record.png"])
ELSE
ColumnViewNotes.Add (ModuleDatabase.Notes.Index, "")
END IF

ColumnViewNotes [ModuleDatabase.Notes.Index] [1]
‘# ModuleDatabase.Notes["Title"]
ColumnViewNotes [ModuleDatabase.Notes.Index] [2] =
*# ModuleDatabase.FormatDate (ModuleDatabase.Notes|["LastModified"])
' Select first item with highest priority
IF CInt (ModuleDatabase.Notes["Priority"]) > firstItem THEN
ColumnViewNotes [ModuleDatabase.Notes.Index] .Selected = TRUE
firstItem = CInt (ModuleDatabase.Notes["Priority"])

Getting Started with Gambas Version 2: A Tutorial Page 98 of 110
timothy.marshal-nichols @ntlworld.com

END IF
NEXT
END

Continued Below

This procedure will display a selected note in the details section of the form window on the right
side of the form. The procedure expects the index to a row in the Notes Result object to select what's
displayed. This why we used this index as the key for items in the ColumnView. We simply need to
move to the desired row to get the record we need.

We copy the note title to the title text box. Then we set the selected radio button for the note priority
based upon the integer in the Priority field. The note content is copied to the note text area. We
place the cursor in the text area at the end of the text and set the focus to the text area. This seems to
be the most reasonable position for the user to start from after they have just selected a note.

Finally we set the changesMade variable to FALSE. To state the obvious: this must be done after
we have completed all the changes we need to make to the notes controls. This is because these
controls fire changes made events that set this variable to TRUE.

FormNotations.class - Continued

PRIVATE SUB DisplayNote (Row AS Integer)
ModuleDatabase.Notes.MoveTo (Row)
TextBoxTitle.Text = ModuleDatabase.Notes["Title"]
IF CInt (ModuleDatabase.Notes["Priority"]) = 1 THEN
RadioButtonMedium.Value = TRUE
ELSE IF CInt (ModuleDatabase.Notes["Priority"]) > 1 THEN
RadioButtonHigh.Value = TRUE
ELSE
RadioButtonLow.Value = TRUE
END IF
TextAreaNote.Text = ModuleDatabase.Notes["Note"]
TextAreaNote.Pos = String.Index (TextAreaNote.Text,
“* Len (TextAreaNote.Text))
TextAreaNote.SetFocus ()

changesMade = FALSE

Getting Started with Gambas Version 2: A Tutorial Page 99 of 110
timothy.marshal-nichols @ntlworld.com

END

Continued Below

Our final function tests if the user has made any changes to the current note. When developing the
application I found I was writing this kind of logic in a number of places. So it looked like a good
idea to write a function for this. This also ensures our application has a common format for handling
changes that have not been saved.

We check for changes to the current note by looking at the value of the changesMade variable. If
there are changes that have not been saved then we display a message box. If the user has clicked the
Continue button then we return FALSE otherwise we return TRUE. We have put the function return
logic this way round so our message box function behaves the same way as the methods in the
Dialog class for getting a file name and path.

FormNotations.class - Continued

PRIVATE FUNCTION TestChangesMade () AS Boolean
DIM mess AS String
IF changesMade THEN
mess = "Changes made to the note\n\n\t" & TextBoxTitle.Text &
“* "\n\nhave not been saved. Do you want to continue?"
IF Message.Warning(mess, "Continue", "Cancel") <> 1 THEN
“* RETURN TRUE
END IF
RETURN FALSE
END

4.5: Running the project

We have now completed the project so lets run it. You run the project by clicking on the green Run
button in the project manager window or by pressing the F5 key. A SQLite database will be created
in your user home directory and a table added to the database. Then the welcome note is added to
the table. We can now test our application works correctly. There follows some of the tests we might
perform. This first set of tests test how we connect to the database.

Getting Started with Gambas Version 2: A Tutorial Page 100 of 110
timothy.marshal-nichols @ntlworld.com

Database Connection Tests

Test Expected Result Pass/Fail
Run the application with a valid A new database and table should be
connection and when the database does not created. The welcome note should be
exist. displayed.

Run the application again with the valid No changes should be made to the
connection and database. database. The first note found with the
highest priority should be displayed.

Call the database with an invalid An error message should be displayed.
connection.
After opening the application in the An error message should be displayed,

previous step click on all the buttons in the
tool bar in turn.

There is a forth possible test you could add. This is where we have a valid connection and database
but the database table does not exist. For a production application you would want to perform this
test. As itis a bit of a complex test new Gambas users might want to skip it.

The next set of test check the adding, reading, updating and deleting of notes. A good way of

developing this test list is to user our CRUD-LS check list as a starting point. Look at each item in
the CRUD-LS list and develop tests for when the action succeeds. We also need tests for the all the
possible ways each action could fail. The following tests assume we are connected to the database.

Database Create, Read, Update and Delete Tests. Plus List and Search Tests

Test Expected Result Pass/Fail
Change the current note click the Add A new note is added to the database and
button. this becomes the current note.

Change the current note but make sure the A new note is added to the database with
note has the same title as an existing note. the duplicate note title and this becomes
Then click the Add button. the current note.

Click on the Refresh button. (Make sure The notes list is refreshed from the
any changes to the current note have been database. The first highest priority note
saved before you do this.) becomes the current note.

Click on the Refresh button after changes The notes list is refreshed from the

have been made to a note but have not been database. The first highest priority note
saved. In the message box that is displayed becomes the current note. Changes to the
click on the Continue button. previous note are lost.

Getting Started with Gambas Version 2: A Tutorial

Page 101 of 110

timothy.marshal-nichols @ntlworld.com

Database Create, Read, Update and Delete Tests. Plus List and Search Tests

Test

Click on the Refresh button after changes
have been made to a note but have not been
saved. In the message box that is displayed
click on the Cancel button.

Clear the search text box of any text. Click
on the Search button.

Enter some search text in the search text
box. Verify this text can be found in some
notes. Click on the Search button. (Make
sure any changes to the current note have
been saved before you do this.)

Enter some search text in the search text
box. Verify this text can not be found in
some notes. Click on the Search button.
(Make sure any changes to the current note
have been saved before you do this.)

Click on the Search button after changes
have been made to a note but have not been
saved. In the message box that is displayed
click on the Continue button.

Click on the Search button after changes
have been made to a note but have not been
saved. In the message box that is displayed
click on the Cancel button.

Make some changes to a note and then
click on the Update button. Test in turn
changes to the title, note and priority.

With a note selected click on the Delete
button. Then in the warning message click
on the Continue button.

With a note selected click on the Delete
button. Then in the warning message click
on the Cancel button.

Click on the Delete button when either no
note is selected or there are no notes in the
database table.

Expected Result Pass/Fail

The refresh action is cancelled.

A message is displayed stating there is no
search text.

Only those notes that contain the search
text in the note title or content are shown.

A message is displayed stating that the
search text was not found. No notes are
displayed.

Only those notes that contain the search
text in the note title or content are shown.
Changes to the previous note are lost.

The search action is cancelled.

The current note is updated and the notes
list is updated. The updated note remains
the current note.

The current note is deleted and the notes
list is refreshed.

The delete action is cancelled.

A message is displays stating there is no
current note to delete.

Our final batch of tests cover the user interface to our application.

Getting Started with Gambas Version 2: A Tutorial Page 102 of 110
timothy.marshal-nichols @ntlworld.com

Other Tests
Test Expected Result Pass/Fail
Click on the help button. The help message should be displayed.

Click on the heading in the column view of The notes sort order change should change
notes. to the relevant column.

Test the resizing of the window from each The forms controls should be resized to fit
side of the window. the window.

Test the resizing of the window from each The forms controls should be resized to fit
corner of the window. the window.

Resize the window so its width is less than Icons that do not fit within the width of the

width of all the icons in the tool bar. tool bar move on to a second line. The rest
of the forms controls are resized
appropriately.

Use the bar between the two half's of the ~ The controls in the two half's of the
form window to resize each section of the window should be resized correctly.
window. (This test does not apply to

Gambas Version 1)

4.6: Switching to a MySQL or PostgreSQL Database

We are not going to deal with installing or setting up a MySQL or PostgreSQL database. For
information on this you should look at http://www.mysql.org/ or http://www.postgresql.org/.

_\@: Preforming a internet search for Installing + MySQL + Linux finds a large amout of
help. Also try Installing + MySQL + “Your Linux dirstibution name”. Similar results
can be obtained for PostgreSQL with Installing + PostgreSQL + Linux.

Swapping to a one of these databases is very simple. Find the line Form_Open event in the
FormNotations class that looks like this:

ModuleDatabase.OpenDatabase ("sglite", User.Home,
“#* Application.Name, "", "")
and change it to something like this for a MySQL database:
ModuleDatabase.OpenDatabase ("mysgl", "localhost",
“# Application.Name, "mysqgl", "password")

Make sure the MySQL user account you select has permissions to create the database and tables the
first time this procedure is run. Check on your MySQL installation or with your database

http://www.postgresql.org/
http://www.mysql.org/

Getting Started with Gambas Version 2: A Tutorial Page 103 of 110
timothy.marshal-nichols @ntlworld.com

administrator for the MySQL user account details. That all we need to change. So long as you have a
valid connection details the program should run and create the database for you.

For a PostgreSQL database we would change the call to something like this:
ModuleDatabase.OpenDatabase ("postgresqgl", "localhost",
* Application.Name, "postgres", "password")

Also the comment above about account details applies to this type of database.

This example demonstrates the changes required to switch database types. We can see how easy this
was. But there are some issues you should consider from a database administrator perspective:

- It is probably not a good idea to hard code the password. It would be better to have a
connection dialogue and at least have the password entered by the user. This dialogue would
be simple to add in Gambas.

« You need the database user to have permissions to create the database and tables when the
program is first run. However is not good practise a leave a normal user with these
permissions. This could be a security issue.

This is not really a problem with the SQLite database we first used. SQLite is intended to be a
single user database. But as you can see the issues involved when swapping database types have
more to do with being a good database administrator than with Gambas related issues.

"

—(g— After changing the database type it would be prudent to rerun the tests in the Running
the project section to ensure your application still works with the new database type.

Getting Started with Gambas Version 2: A Tutorial Page 104 of 110
timothy.marshal-nichols @ntlworld.com

5: @& Appendix 1: Database Commands with Exec and SQL

In this appendix we shall look at converting the Notations application to directly using Structured
Query Language (SQL) to communicate with a database. In the main section of this tutorial we
avoided using SQL in order to demonstrate more of the Gambas database classes. We also made the
design decision to place all the code to communicate with the database inside one module called
ModuleDatabase. This decision has paid benefits now as all the changes we need to make are
confined to this one module.

—@— In the example Notations project that ships with this tutorial there are two extra

LA directories in the project. The sub directory called ModuleDatabase-SQL contains a
version of the file ModuleDatabase.module that follows the code examples in this
appendix. Simply copy this file into the main project directory and overwrite the one
that already exists there.

In order to test this file you will need to compile the project again. Gambas by default
only compiles files that have changed using a project editor. Select Project menu in the
Gambas project manager. Then select the sub menu option Compile All. This will
ensure all files are newly compiled and you are running the latest version of the project.
You can also click on the Compile all tool bar button in the project manager to achieve
the same result.

The sub directory called ModuleDatabase-Gambas contains a backup copy of the
original file ModuleDatabase.module. You can use this file to restore the project to its
original format.

The structure of the commands we need is fairly straightforward. We only need two Gambas
database objects, a connection object and a result object. The Exec method on the connection
object returns a read only result object. So to get records from the database we construct our SQL
statement, pass this to the Exec method, and then we can read the returned data from the result
object:

sgl = “SQL select statement”
result = connection.Exec(sqgl)

You also can use the Exec method to send any valid SQL statements to your target database. So
this method can also be used when we add, update or delete records from the database.

sql = “Create SQL update, insert or delete statement (s)”
connection.Exec(sql)

Of course with these method you still need to catch any errors returned. We are not going to deal
with how to use SQL in this tutorial. If you need information on SQL a good place to start is the
web sites for the database vendors listed in the Gambas Resources section.

Getting Started with Gambas Version 2: A Tutorial Page 105 of 110
timothy.marshal-nichols @ntlworld.com

There are two important issues to consider when constructing the string for the SQL statement. The
first is we need to format the date/time in a way that is unambiguous and understood by the
database. This fragment shows how we format the current date/time:

“rr g Format (Now, "yyyy-mm—dd hh:nn:ss") & “'”

This will produce a string something like '2006-05-13 19:38:34" at the time of writing this
sentence (on 13 May 2006 at 19:38:34).

In our SQL statements we have used text strings that are surrounded by single quotes. This means
that if the user enters a single quote in their title or note entry then the INSERT or UPDATE SQL
statement would fail. This would be confusing to the user as they would just see an bad SQL query
error message and not know how to correct the problem. Hence we have adopted the (admittedly
crude) approach of replacing any single quotes with double quotes when constructing our SQL
query. (You can include single quotes within a text string in the version of this application using
Gambas objects to add and update records.)

This is a listing of the changes we need to make to the ModuleDatabase code to use the SQL
method for communications to the database.

-\(g- After entering this listing you should rerun the all the tests in the Running the project
section to ensure your application still works with this different method of
communicating with the database.

Also if you change the database type, as described in, Switching to a MySQL or
PostgreSQL Database you should be very thorough in rerunning any testing. You need
to repeat all your testing for each type of database you intend to support. You need to do
more retesting than it you used the Gambas method of communicating with the

database.
“ In the following listing you need to make a few small changes for Gambas version 1.
The lines that have the format:
Sambas
sgl &= "“xxx”

need to be changed to:
sgl = sgl & "xxx”

as Gambas version 1 does not understand the &= operator. Also Gambas version 1 does
not understand the Dconv function. So lines that include it:
Dconv (Error.Text)

should just omit the function call:
Error.Text

Getting Started with Gambas Version 2: A Tutorial Page 106 of 110
timothy.marshal-nichols @ntlworld.com

ModuleDatabase.module

PRIVATE databaseConnection AS NEW Connection
PUBLIC Notes AS Result
' This procedure will open a SQLite database connection.
' If the database does not exist it will be created.
' If the tables do not exist they will be created.
PUBLIC SUB OpenDatabase (DBType AS String, DBHost AS String, DBName
‘¢ AS String, UserName AS String, UserPassword AS String)
DIM sgl AS String
DIM errorMessageHeader AS String
' Open a connection (to the database server only)
databaseConnection.Type = Lower (DBType)
databaseConnection.Host = DBHost
databaseConnection.Name = ""
databaseConnection.Login = UserName
databaseConnection.Password = UserPassword
databaseConnection.Port = ""
' Open the connection
TRY databaseConnection.Open ()
IF ERROR THEN
errorMessageHeader = "Could not open database connection " &
“+ DBHost
Error.Raise (Error.Text)
END IF
' Check if the server connection has a database with the
' required database name.
IF NOT databaseConnection.Databases.Exist (DBName) THEN
PRINT "Database not found. Creating new database"
' Create a new database
databaseConnection.Databases.Add (DBName)
' I found I needed this with a SQLite database
' (but not with a MySQL database)
WAIT 0.5
END IF

Getting Started with Gambas Version 2: A Tutorial Page 107 of 110
timothy.marshal-nichols @ntlworld.com

' Close the server connection
databaseConnection.Close ()
' Open a connection to the database
databaseConnection.Host = DBHost
databaseConnection.Name = DBName
TRY databaseConnection.Open ()
IF ERROR THEN
errorMessageHeader = "Could not open database " & DBName &
“*+ " on " & DBHost
Error.Raise (Error.Text)
END IF
' Check if the database has a Notes table
IF NOT databaseConnection.Tables.Exist ("Notes") THEN
PRINT "Database tables not found. Creating new notes table"
' Add a Notes table to the database
sgl = "CREATE TABLE 'Notes' ("
sgl &= "CreateDate DATETIME NOT NULL, "
sgl &= "LastModified DATETIME, title TEXT, "
sgql &= "Note TEXT, "
sgl &= "Priority INTEGER NOT NULL DEFAULT 0, "
sgl &= "PRIMARY KEY (CreateDate));"
databaseConnection.Exec (sql)
' Add a default welcome record

AddData ("Welcome", File.Load("Welcome.txt"), 0)

END IF
CATCH
IF errorMessageHeader = "" THEN
errorMessageHeader = "Database connection error: " & DBName &

“+ " on " & DBHost

END IF

Error.Raise ("" & errorMessageHeader & "<hr>Error:
" &
“* DConv (Error.Text))

END

PUBLIC SUB CloseDatabase ()

TRY databaseConnection.Close ()

Getting Started with Gambas Version 2: A Tutorial Page 108 of 110
timothy.marshal-nichols @ntlworld.com

IF ERROR THEN PRINT "Error closing database"
END
' Create a record
PUBLIC FUNCTION AddData(Title AS String, Note AS String, Priority
“# AS Integer) AS String

DIM sgl AS String

DIM createTime AS Date

createTime = Now

Title = Replace(Title, "'", "\"")

Note = Replace (Note, "'", "\"")

sgl = "INSERT INTO Notes "

sgl &= " (CreateDate, LastModified, Title, Note, Priority) "

sgl &= "VALUES ("

sgl &= "'" & Format (createTime, "yyyy-mm-dd hh:nn:ss") & "', "
“# ' CreateDate

sgl &= "'" & Format (createTime, "yyyy-mm-dd hh:nn:ss") & "', "
“* 'LastModified

sql &= "'" & Conv(Title, Desktop.Charset,
‘“# databaseConnection.Charset) & "', "

sgl &= "'" & Conv(Note, Desktop.Charset,
‘* databaseConnection.Charset) & "', "

sgl &= Priority & ");"

databaseConnection.Exec (sql)

RETURN FormatDate (createTime)
CATCH

Error.Raise ("Add database record error<hr>Error:
" &
“* DConv (Error.Text))

END

' Read a table
PUBLIC SUB SelectData()
DIM sgl AS String
sgl = "SELECT * FROM Notes;"
Notes = databaseConnection.Exec(sqgl)

CATCH

Getting Started with Gambas Version 2: A Tutorial Page 109 of 110
timothy.marshal-nichols @ntlworld.com

Error.Raise ("Select database records error<hr>Error:
"
“* & DConv (Error.Text))

END

' Update a record
PUBLIC SUB UpdateData (Row AS Integer, Title AS String, Note AS
‘“* String, Priority AS Integer)

DIM sgl AS String

DIM createDate AS Date

Title = Replace(Title, "'", "\"")

Note = Replace (Note, "'", "\"")

Notes.MoveTo (Row)

sgl = "UPDATE Notes "

sgql &= "SET LastModified = '" & Format (Now,

“ "yyyy-mm-dd hh:nn:ss") & "', "

sqgl &= "Title = '"" & Conv(Title, Desktop.Charset,
“* databaseConnection.Charset) & "', "

sgl &= "Note = '"" & Conv (Note, Desktop.Charset,
“* databaseConnection.Charset) & "', "

sgl &= "Priority = " & Priority & " "

createDate = Notes["CreateDate"]

sgl &= "WHERE CreateDate = '" & Format (createDate,

= "yyyy-mm-dd hh:nn:ss") & "';"

databaseConnection.Exec (sql)
CATCH

Error.Raise ("Update database record error<hr>Error:
"
“* & DConv(Error.Text))

END

' Delete a record

PUBLIC SUB DeleteData (Row AS Integer)
DIM sgl AS String
DIM createDate AS Date
Notes.MoveTo (Row)
createDate = Notes["CreateDate"]

sgl = "DELETE FROM Notes "

Getting Started with Gambas Version 2: A Tutorial Page 110 of 110
timothy.marshal-nichols @ntlworld.com

sgl &= "WHERE CreateDate = '" & Format (createDate,
“ "yyyy-mm-dd hh:nn:ss") & "';"

databaseConnection.Exec (sgl)
CATCH

Error.Raise ("Delete database record error<hr>Error:
"
“+ & DConv (Error.Text))

END

PUBLIC FUNCTION FormatDate(d AS Date) AS String
RETURN Format (d, "dd mmm yyyy hh:nn:ss")
END

	1: Introduction
	1.1:GAMBas Almost Means Basic
	1.2:Projects
	1.3:Gambas Resources
	1.4:License
	1.5:Acknowledgments

	2: Your First Gambas Project: SimpleEdit
	2.1:Creating the project
	2.2:Creating the user interface
	2.3:Adding the code
	2.4:Running the project

	3: Drawing Project: ImageShow
	3.1:Creating the project
	3.2:Creating the user interface
	3.3:Adding the Code
	3.4:Running the project

	4: Database Project: Notations
	4.1:Creating the project
	4.2:Creating the user interface
	4.3:Checking our user interface for CRUD
	4.4:Adding the code
	4.5:Running the project
	4.6:Switching to a MySQL or PostgreSQL Database

	5: Appendix 1: Database Commands with Exec and SQL

